过去几十年来,黑洞信息悖论一直备受争议,但尚未得到完全解决。因此,人们希望在简单且可通过实验获得的系统中找到该悖论的类似物,这些系统的解决可能有助于解决这个长期存在的基本问题。在这里,我们识别并解决了 Halperin-331 和 Pfaf 态之间量子霍尔界面中明显的“信息悖论”。当 Abel 331 准粒子穿过界面进入非 Abel 普法夫态时,其伪自旋自由度携带的信息会被打乱,无法进行局部测量;从这个意义上说,普法夫区域是黑洞内部的类似物,而界面的作用类似于黑洞视界。我们证明,一旦“黑洞”蒸发,准粒子返回 331 区域,“丢失”的信息就会恢复,尽管是高度纠缠的形式。这种恢复可以通过这些准粒子所携带的熵的佩奇曲线来量化,这些准粒子是霍金辐射的类似物。
摘要:利用最近提出的量子极值曲面构造方法,忽略反作用和灰体因子,计算了四维永恒Reissner-Nordström黑洞的Page曲线。没有岛,霍金辐射的熵随时间线性增长,这导致了永恒黑洞的信息悖论。通过极值化允许岛贡献的广义熵,我们发现岛延伸到了Reissner-Nordström黑洞视界之外。当考虑到岛的影响时,结果表明,在远离黑洞视界的给定区域,晚期霍金辐射的纠缠熵再现了Reissner-Nordström黑洞的Bekenstein-Hawking熵,并附加一个表示物质场影响的项。该结果与永恒黑洞辐射的纠缠熵的有限性相一致。这有助于在上述近似下解决当前情况下的黑洞信息悖论问题。
理解黑洞的基本动力结构对于阐明黑洞物理学的基本问题的新阐明至关重要[1]。黑洞通常被认为是由一般相对论捕获的;然而,在黑洞的地平线附近,量子理论在物理事件上也具有显着的效果[2]。在黑洞的事件范围内,量子和相对论理论的结合出现的一种重要效果是通过发射所谓的鹰辐射来蒸发黑洞[3]。此描述使我们达到了深刻的身体直觉,在Minkowski时空中的真空状态不再是Rindler时空中观察者的真空状态,这是由于黑洞的存在。这些研究提出了一些矛盾和悖论,例如信息悖论[4-8]。解决这些悖论需要更好地理解相对论理论的量子描述[1,9 - 12]。此外,更好地了解黑洞附近的量子过程可能会为整个宇宙的一致图片铺平道路[13]。
摘要:利用广义自由能和Kramers逃逸率,在量子Bañados-Teitelboim-Zanelli(qBTZ)黑洞中观测到一种新奇的热力学现象,该现象也揭示了量子黑洞的独特性质。在通过扩展麦克斯韦构造得到的广义自由能的影响下,黑洞系统内部各热力学态的随机热运动诱发相变。通过对Kramers逃逸率的分析发现,qBTZ黑洞热力学系统表现出反弹效应,这源于黑洞热力学系统中熵的非单调性。此外,在不同量子反作用下得到了qBTZ黑洞的整体热力学图像。
旋转的黑洞储存了可以提取的旋转能量。当黑洞浸入外部提供的磁场时,能层内磁场线的重新连接会产生负能量(相对于无穷大)粒子,这些粒子会落入黑洞事件视界,而其他加速粒子则会逃脱并从黑洞中窃取能量。我们通过分析表明,当黑洞自旋较高(无量纲自旋 a ∼ 1)且等离子体被强磁化(等离子体磁化 σ 0 > 1 / 3)时,可以通过磁重联提取能量。允许提取能量的参数空间区域取决于等离子体磁化和重新连接磁场线的方向。对于 σ 0 ≫ 1,被最大旋转黑洞吞噬的减速等离子体的焓在无穷大处的渐近负能量为 ϵ ∞ − ≃− p
到自由落体进入黑洞的质量的辐射[6-9])。同样,一个永恒的均匀加速边界(移动的镜子)显然不会向无穷远处的观察者发射能量,例如[10]。对于永恒均匀加速的微妙之处和非直观行为,目前尚未达成共识(有关选择真空态之间区别的可能理由,请参阅[11])。另一个非常有趣的方面[12]是渐近静态镜子保持幺正性和信息[13]。我们探索了一个融合均匀加速和零加速度这两种状态的模型,并直观地表明该系统可以在较长时间内以恒定功率辐射粒子。该系统不仅会保存信息,还会发射热能,守恒总辐射能量,并发射有限的总粒子,而不会发生红外发散。这个模型可以模拟黑洞完全蒸发。相关的探索并非史无前例。黑洞蒸发具有相近的加速类似物[14],包括移动镜像模型[4,15]。渐近无限加速轨迹[16],如史瓦西黑洞、雷斯纳-诺德斯特伦黑洞和克尔黑洞的加速边界对应关系[17-19],演化为永恒热平衡解[20]。渐近有限加速(渐近均匀加速)对应于极值黑洞[21-24],而渐近恒定速度(零加速度)可以提供描述黑洞残余模型(例如[25-31])的信息保留准热解。最近,人们特别关注以渐近零速度镜为特征的幺正完全黑洞蒸发模型(例如 [ 32 – 38 ])。纠缠熵 [ 39 ] 以及信息直接与镜轨迹相关 [ 40 ]。然而,远处的观察者探测到的是辐射功率,而不是熵。我们通过均匀加速的模拟情况研究了完全黑洞蒸发中这两者之间的联系。
摘要:Callan -Giddings -Harvey -Strominger黑洞的频谱和温度对应于加速反射边界条件的时空。Beta系数与移动的镜像模型相同,该模型在实验室时间中的加速度为指数。黑洞的中心是由红移的正规条件完美反映了场的模式,这是粒子创造的来源。除了计算能量频道外,我们还发现了与黑洞质量相关的相应运动镜参数和重力模拟系统中的宇宙常数。概括到任何镜像轨迹,我们始终如一地得出了自我力量(Lorentz – Abraham – Dirac),一致地表达它,并且与纠缠熵相关的Larmor功率,邀请以信息流的方式解释加速辐射。镜子自力和辐射力应用于特定的CGHS黑洞模拟运动镜,该镜子在渐近方法中揭示了信息在热平衡的过程中的信息物理。
我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。
理论物理学中尚未解决的主要问题之一是将粒子物理学的标准模型与爱因斯坦的引力理论统一起来。与此密切相关的另一个问题是黑洞的微观量子描述。根据贝肯斯坦著名的公式,黑洞的经典熵等于其视界的表面积(以普朗克单位表示)。在量子描述中,该熵应与黑洞不同量子态数量的对数成正比。由于黑洞熵的尺度与边界面积而非体积相似,因此这表明黑洞具有全息描述。马尔达西那的 AdS/CFT 猜想是该方向的重大突破,它将 D 维的经典引力系统与 D-1 维的强耦合规范理论联系起来。这种全息规范-引力对偶性激发了一种全新的统一问题和相关黑洞量子物理学方法。本课程通过量子多体系统、量子场论和量子信息科学的视角,提供基于问题解决的全息术简介。其目的是加深对理论物理学中最重要的发展之一的基础知识的理解,并提高研究技能。
摘要 随着信息任务的复杂性,二体和三体纠缠已经不能满足我们的需要,我们需要更多的纠缠粒子来处理相对论量子信息。本文研究了dilaton黑洞背景下Dirac场的真正N体纠缠和分布关系,给出了弯曲时空中所有物理上可及和不可及纠缠的一般解析表达式。我们发现,可及的N体纠缠随着黑洞dilaton的增加表现出不可逆的退相干,而不可及的N体纠缠则从零单调或非单调增加,取决于可及到不可及模式的相对数量,这与二体和三体纠缠中不可及纠缠只单调增加的情况形成了鲜明的对比。我们还发现了弯曲时空中可及和不可及的 N 部分纠缠之间的两种分布关系。这些结果让我们对霍金辐射有了新的认识。