分布式发电 (DG) 单元是发电厂,对当前电力系统网络的架构非常重要。增加这些 DG 单元的好处是增加网络的电力供应。但是,如果分配和/或大小不正确,安装这些 DG 单元可能会产生不利影响。因此,需要对它们进行最佳分配和大小调整,以避免电压不稳定和投资成本高昂等情况。本文开发了两种基于群的元启发式算法,即粒子群优化 (PSO) 和鲸鱼优化算法 (WOA),以解决输电网络规划中 DG 单元的最佳位置和大小问题。支持技术损耗敏感度因子 (LSF) 用于识别潜在母线,以实现 DG 单元的最佳位置。在两个 IEEE 母线测试系统(14 和 30 母线)上确认了算法的可行性。比较结果表明,两种算法都能产生良好的解决方案,并且在不同指标上彼此优于对方。 IEEE 14 母线和 30 母线测试系统中,考虑技术经济因素后,WOA 实际功率损耗减少量分别为 6.14 MW 和 10.77 MW,而 PSO 实际功率损耗减少量分别为 6.47 MW 和 11.73 MW。在两个母线系统中,PSO 的总 DG 单元尺寸更小,分别为 133.45 MW 和 82.44 MW,而 WOA 分别为 152.21 MW 和 82.44 MW。本文揭示了 PSO 和 WOA 在输电网络中 DG 单元优化定型应用中的优势和劣势。
主要关键词