: “我们应该充分利用它。”我们推荐阅读原文了解更多详情。土壤有机质在很大程度上是陆地植物退化的长期积累产物,在更大范围的土壤中改变其含量有可能彻底解决气候危机。为此,所谓的“千分之四”倡议声称,每年农田土壤碳含量增加 0.4% 就足够了,[2,5] 再加上贫瘠、碳含量贫瘠的荒地的巨大贡献,这并不难。另一个重要的事实是,陆地植物的光合作用每年在全球范围内固定超过 2200 亿吨的二氧化碳,[6] 这相当于每年吸收 27.8 千分之一的大气二氧化碳(这是基于陆地植物的最大理论恢复率)。作为一个思想实验,大气中的二氧化碳仅需大约 5 年即可“消耗”至工业化前的水平。但是:在没有干扰的情况下,只有少量的这种固定碳最终会通过自然过程进入土壤碳,因为死亡的植物物质大部分被代谢(转化为甲烷和二氧化碳),剩下的很少一部分形成土壤碳库。因此,将土壤碳作为一种化学产品来谈论具有重大的规模和重要性:它远远大于人类在能源和化学方面的所有化学活动,只是我们并没有积极地去做。图 1 还以图形方式比较了不同的碳库,以说明相对重要性和规模。从专门研究碳和煤的碳科学家的角度来看,土壤碳是什么显然存在很大的困惑。肯定存在一种颗粒部分,即 C 含量高于 70 wt% 的固体,它不能溶解或膨胀,因此只能以颗粒或多孔支架的形式存在。该产品通过生物过程或火烧高度浓缩。“生物炭”这一符号,即火焰碳化的木质纤维素生物质,是指复制这种土壤碳的试验,并以各种方式应用于农业实验(放入土壤的表层、耕作层和下层)。同时,我们认为这太简单了,以下讨论不是关于土壤碳的“硬”部分。在肥沃的土壤或泥炭中,碳的浓缩程度较低,至少根据我们的实验,大部分碳是可提取的,因此自然界中存在腐殖酸。“腐殖酸”(HA)这一符号来自早期的化学经验,即强碱溶解了黑褐色物质的很大一部分,而重新酸化则会导致沉淀。也有少量腐殖质膨胀但不溶解,但由于其化学性质和
主要关键词