Loading...
机构名称:
¥ 1.0

对于通用量子计算,实际实施需要克服的一个主要挑战是容错量子信息处理所需的大量资源。一个重要方面是实现由量子纠错码中的逻辑门构建的任意幺正算子。通过组装从一小组通用门中选择的逻辑门序列,可以使用合成算法将任何幺正门近似到任意精度,这些通用门在量子纠错码中编码时可容错执行。然而,目前的程序还不支持单独分配基本门成本,许多程序不支持扩展的通用基本门集。我们使用基于 Dijkstra 寻路算法的穷举搜索分析了标准 Clifferd+T 基本门集的成本最优序列,并将其与另外包括 Clifferd 层次结构更高阶的 Z 旋转时的结果进行了比较。使用了两种分配基本门成本的方法。首先,通过递归应用 Z 旋转催化电路将成本降低到 T 计数。其次,将成本指定为直接提炼和实现容错门所需的原始(即物理级)魔法状态的平均数量。我们发现,使用 Z 旋转催化电路方法时,平均序列成本最多可降低 54 ± 3%,使用魔法状态提炼方法时,平均序列成本最多可降低 33 ± 2%。此外,我们通过开发一个分析模型来估计在近似随机目标门的序列中发现的来自 Clifford 层次结构高阶的 Z 旋转门组的比例,从而研究了某些基本门成本分配的观察局限性。

Clifford 层次结构中成本最优的单量子比特门合成

Clifford 层次结构中成本最优的单量子比特门合成PDF文件第1页

Clifford 层次结构中成本最优的单量子比特门合成PDF文件第2页

Clifford 层次结构中成本最优的单量子比特门合成PDF文件第3页

Clifford 层次结构中成本最优的单量子比特门合成PDF文件第4页

Clifford 层次结构中成本最优的单量子比特门合成PDF文件第5页