Loading...
机构名称:
¥ 1.0

53 秒后,投诉就完成了,包括简介、当事人描述、司法管辖权信息和适用法律引文,以及虚假指控的概述。“看起来很棒,”波士顿先锋公共利益法律中心办公室的一位律师观看了演示,说道。贝利法官更仔细地审查了投诉,并做出了判决:“这是一份非常有用的投诉。”无论律师是否喜欢,人工智能革命已经开始。问题是它将如何改变法律业务——以及改变的速度有多快。对于许多公司来说,这项技术有望提高效率。在 Sullivan & Cromwell LLP,人工智能发现助手(AIDA)有效地消除了人工一级文件审查,降低了公司及其客户的工作成本。该公司表示,它已经在过去数十起案件中训练了该软件,并“大幅”提高了发现速度,让律师可以做更多“高端工作”。 “你谈论的项目原本需要数周或数月才能完成,现在只需几个小时,”诉讼合伙人马修·施瓦茨告诉 Law360。“这带来了非常显著的成本节省。”施瓦茨强调,Sullivan & Cromwell 会小心谨慎地确保客户数据受到保护,并且该技术不会“幻觉”事实,同时表示,该公司鼓励其律师测试人工智能如何提供帮助。“我们希望允许我们的律师尝试其他人工智能程序,让他们看看它如何

更好、更快、更奇怪:Attys 如何看待我们的 AI 未来

更好、更快、更奇怪:Attys 如何看待我们的 AI 未来PDF文件第1页

更好、更快、更奇怪:Attys 如何看待我们的 AI 未来PDF文件第2页

更好、更快、更奇怪:Attys 如何看待我们的 AI 未来PDF文件第3页

更好、更快、更奇怪:Attys 如何看待我们的 AI 未来PDF文件第4页

相关文件推荐

2020 年

人工智能如何改变我们做出购买决策的方式?这对商标法意味着什么?商标法的核心在于如何购买商品和服务,而由于人工智能正在影响购买过程,因此从定义上讲它也影响着商标法。人工智能通过两种方式影响购买过程:(a)消费者可获得的品牌信息和(b)谁来做出购买决策。亚马逊的 Alexa 等人工智能个人零售助理有可能成为品牌向消费者提供的“守门人”,控制向消费者提供哪些品牌信息,并以纯粹的形式购买品牌产品,在人工智能所谓的“自动执行模型”中几乎不需要或根本不需要人为干预,从而有效地将传统的购物体验从“先购物后发货”模式颠覆为“先发货后购物”模式。商标法的许多关键方面都涉及人性的弱点。如果您考虑商标法和实践中的一些“流行词”,例如“混淆”、“不完全记忆”、“联想”和“商标混淆”,这些概念都围绕着人类的弱点。然而,人工智能有可能从购买过程中消除“人性”和“弱点”。人工智能应用程序可以通过“给我买个灯泡”等一般命令来购买产品。人类消费者与人工智能应用程序购买的灯泡品牌没有任何互动。人工智能应用程序会混淆吗?它会混淆商标吗?人工智能应用程序甚至会通过传统的听觉、语音和概念比较商标的方式来评估产品购买,这就是所谓的人工智能黑箱问题吗?人工智能应用程序经常受到个人消费者过去购买决策的影响,而人工智能应用程序做出购买决定或建议的原因有时可能难以理解。在这些情况下,知识产权侵权责任问题也引起了重要的问题。然而,即使人工智能应用程序不做出购买决策,它仍然会影响消费者在做出购买决策时可用的品牌信息。例如,亚马逊 Alexa 平均只向消费者推荐三种产品。它控制着向消费者推荐什么品牌产品,它而不是人类消费者掌握着所有的品牌信息。然而,人工智能对购买过程的影响必须放在历史背景中来看待。人工智能的兴起是新的,但并非史无前例。现代商标法诞生于十九世纪,并发展到现代。然而,在此期间,购买过程并非一成不变,而是发生了变化。我们只需看看从传统的十九世纪“店主”购买产品模式到二十世纪二十年代超市发明的变化,从互联网和社交媒体的兴起到人工智能的兴起。商标法已经适应并发生了变化,实际上可以说是适应性最强的知识产权法形式。例如,关于人工智能应用程序的责任问题,我们已经可以从关键词广告的案例中得到指导,例如谷歌法国,它是随着互联网购物的兴起而发展起来的。如果购买过程中的“参与者”如人工智能应用程序在购买决策/过程中扮演更被动的角色,则人工智能应用程序提供商不太可能被追究责任,如果人工智能应用程序在购买决策中扮演更积极的角色,并且可以说人工智能提供商在购买决策中强烈影响消费者,则更有可能发现责任。商标法已经适应了购买过程的变化,并且它将再次适应。HGF 合伙人兼特许商标律师 Lee Curtis

¥1.0
2021 年

“如何度过人工智能寒冬” James Luke 博士,IBM 杰出工程师和首席发明家 如果您不知道,人工智能寒冬是指在人们对人工智能的期望达到顶峰之后出现的低迷,资金枯竭,专业人士对其潜力嗤之以鼻。70 年代末 80 年代初发生过一次人工智能寒冬,十年后又发生过一次——最后一次是在 1992 年。在这样的“寒冬”里,人们对人工智能嗤之以鼻并不罕见——James Luke 深情地回忆起 IBM 的一位(至今仍是)高管在他职业生涯早期告诉他,“如果你想在公司有所成就,就离开人工智能”。但即便是 Luke 也承认,考虑到挑战的规模,出现怀疑者并不奇怪。Luke 在会议开幕式主旨演讲中表示:“我们试图用人工智能重塑人脑的智能,这是人类面临的最大工程挑战。” “它比曼哈顿计划、比大型强子对撞机还要大——但我们通常只以两三个人组成的团队进行研究。”尽管如此,他仍敦促与会代表对人工智能保持积极态度,因为如果以正确的方式对待,人工智能可以发挥作用并带来巨大的机遇。那么,什么才是“正确的方式”?卢克说,人工智能有效用例的最佳例子之一仍然是 1997 年超级计算机深蓝与世界冠军国际象棋选手加里卡斯帕罗夫之间的著名比赛。深蓝曾在 1996 年挑战卡斯帕罗夫并失败,而它的架构师 IBM 决心不再重蹈覆辙。IBM 工程师寻求另一位国际象棋大师的帮助来构建深蓝,并对计算机进行编程,使其能够预测未来 14 步。从本质上讲,它复制了人类的能力,但通过巨大的规模进行了扩展。尽管“深蓝”赢得了 1997 年的锦标赛,但它的局限性也暴露无遗。当时参与打造它的大师说:“深蓝每秒评估两百万步,我评估三步。但我怎么知道该评估哪三步?”卢克说,这句话完美地概括了人工智能的缺点:“我们还没有解决这个问题,我们不明白大师如何知道该评估哪三步。这是智能和人工智能之间差异的一个很好的例子。人工智能不会比人类更好——人类脑细胞比电子神经元复杂得多。”他补充说,人工智能经常被认为比人类智能更好,因为它不会忘记东西。但卢克认为,人类忘记的能力是智能的一部分,因为忘记可以帮助我们“概括、实验和学习”——更不用说不会被我们做过的所有可耻的事情所打败。卢克分享了三条让人工智能发挥作用的建议:

¥1.0