Loading...
机构名称:
¥ 1.0

背景:机器学习技术在医疗保健领域的使用正在增加,这使得人们能够更有效地从大型管理数据集中估计和预测健康结果。本研究的主要目的是开发一种通用机器学习 (ML) 算法,根据过去 2 年的报销次数来估计糖尿病的发病率。方法:我们从与法国国家健康数据库 (即 SNDS) 链接的基于人群的流行病学队列 (即 CONSTANCES) 中选择了一个最终数据集。为了开发这种算法,我们采用了监督式 ML 方法。执行了以下步骤:i. 选择最终数据集,ii.目标定义,iii.为给定的时间窗口编码变量,iv.将最终数据拆分为训练和测试数据集,v. 变量选择,vi。训练模型,vii。使用测试数据集验证模型和 viii。模型的选择。我们使用受试者工作特征曲线下面积 (AUC) 来选择最佳算法。结果:用于开发算法的最终数据集包括来自 CONSTANCES 的 44,659 名参与者。在与 CONSTANCES 队列相关的 SNDS 的 3468 个变量中,选择了 23 个变量来训练不同的算法。估计糖尿病发病率的最终算法是线性判别分析模型,该模型基于过去 2 年内与生物测试、药物、医疗行为和未经手术的住院治疗相关的选定变量的报销次数。该算法的敏感性为 62%,特异性为 67%,准确率为 67% [95% CI:0.66 – 0.68]。

将人工智能用于公共卫生监测

将人工智能用于公共卫生监测PDF文件第1页

将人工智能用于公共卫生监测PDF文件第2页

将人工智能用于公共卫生监测PDF文件第3页

将人工智能用于公共卫生监测PDF文件第4页

将人工智能用于公共卫生监测PDF文件第5页