Loading...
机构名称:
¥ 1.0

Siruganur ,Trichy Abstract – Modern car insurance industries waste a lot of resources due to claim leakages, which determines the amount they pay. Currently,visual Inspections and Validations are done manually,which can delay the claim processes.Previous study have shown that classifying images is possible with a small data set,by transferring and re purposing knowledge from models trained for a different task. Our goal is to build a Car Damage classifier using a deep learning model that is able to detect the different damage types and give an accurate depiction given a car image. However, due to the limiting set of data, it can be result in being a determining factor.Training a Convolutional Network from scratch (with random initialization) is difficult because it is relatively rare to have a large enough dataset.In this project we explore the problem of classifying images containing damaged cars to try and assess the monetary value of the damage. Because of the nature of this problem,classifying this data may prove to be a difficult task since no standardized dataset exists and some of the clases utilized might not be discriminative enough. Utilizing a pretrained YOLOv8 model,we trained a classifier in order to categorize the dataset,testing 3 different cases: damaged or not (damage vs whole),damage location (front vs rear vs side),damage level (minor vs moderate vs severe). Index Terms - YOLO model,CNN

car damage detection using machine learning

car damage detection using machine learningPDF文件第1页

car damage detection using machine learningPDF文件第2页

car damage detection using machine learningPDF文件第3页

car damage detection using machine learningPDF文件第4页

car damage detection using machine learningPDF文件第5页

相关文件推荐

2019 年

肾小球病理学发现的分类 UP LEARNING 和肾病专家 - AI 集体 ENGROCTIVE 方法 Eiichiro Uchino #A,B Yugami C , Sachiko Minamiguchi f , Hironi Haga f , Motoko Yanagita B,g , Yasushi Ono D,HA) 京都大学医学院医学智能系统系,日本京都 B) 日本京都肾脏病学系,日本京都,京都,京都,京都,京都,京都,京都,日本 D) 京都大学医学院生物医学数据智能系,日本京都 E) 京都大学医院医学信息学和管理规划部,日本京都 F) 京都大学医学院诊断病理学系,日本京都 H) Rise,药物开发数据智能平台小组,日本横滨 # 这些作者贡献者对这项工作做出贡献。 Running title: Glomeruli classification by deep learning Keywords: renal pathology, artificial intelligence, deep learning, collective intelligence Corresponding authors: Yasushi Okuno, Department of Biomedical Data Intelligence, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 881, FAX: +81-75-751-4881, E-mail: okuno.yasushi.4c@kyoto-u.ac.jp and Motoko Yanagita, Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan Phone: +81-75-751-3860, FAX: +81-75-751-3859, E-mail: motoy@kuhp.kyoto-u.ac.jp Abstract Background Automated classification of glomerular pathological findings is potentially beneficial in establishing an efficient and objective diagnosis in renal pathology.虽然先前的研究已经验证了用于对整体硬化和肾小球细胞增殖进行分类的人工智能(AI)模型,但诊断还需要其他一些肾小球病理学发现。这些人工智能模型与临床医生之间的合作是否能提高诊断性能还不得而知。在这里,我们开发了人工智能模型来对肾小球图像进行分类,以获得病理诊断所需的主要发现,并研究这些模型是否可以提高肾病科医生的诊断能力。方法

¥1.0