云计算使个人和公司更容易获得大型计算和内存资源。然而,它也引发了人们对用户与远程云服务器共享的数据的隐私担忧。全同态加密 (FHE) 通过对加密数据进行计算为该问题提供了解决方案。不幸的是,所有已知的 FHE 构造都需要一个噪声项来确保安全,而且这种噪声在计算过程中会增加。要对加密数据执行无限制计算,我们需要执行一个称为引导的定期降噪步骤。此引导操作受内存限制,因为它需要几 GB 的数据。与未加密数据相比,这导致操作加密数据所需的时间增加了几个数量级。在这项工作中,我们首先对 CKKS FHE 方案中的引导操作进行了深入分析。与其他现有工作类似,我们观察到 CKKS 引导表现出较低的算术强度(<1 Op/byte)。然后,我们提出了内存感知设计 (MAD) 技术来加速 CKKS FHE 方案的引导操作。我们提出的 MAD 技术与底层计算平台无关,可以同样应用于 GPU、CPU、FPGA 和 ASIC。我们的 MAD 技术利用了几种缓存优化,可以实现最大限度的数据重用并执行操作的重新排序,以减少需要传输到/从主存储器的数据量。此外,我们的 MAD 技术包括几种算法优化,可减少数据访问模式切换的次数和昂贵的 NTT 操作。将我们的 MAD 优化应用于 FHE 可将引导算法强度提高 3 × 。对于逻辑回归 (LR) 训练,通过利用我们的 MAD 优化,现有的 GPU 设计可以在相同的片上内存大小下获得高达 3.5 × 的性能提升。类似地,现有的 ASIC 设计在 LR 训练和 ResNet-20 推理方面分别可获得高达 27 倍和 57 倍的性能提升,
主要关键词