摘要 — 运动想象 (MI) 脑机接口 (BMI) 使我们只需想象执行运动动作即可控制机器。实际用例需要一种可穿戴解决方案,其中使用嵌入在节能微控制器单元 (MCU) 上的机器学习模型在传感器附近本地对脑信号进行分类,以确保隐私、用户舒适度和长期使用。在这项工作中,我们为嵌入式 BMI 解决方案的准确性与成本权衡提供了实用见解。我们的多光谱黎曼分类器在 4 类 MI 任务上达到 75.1% 的准确率。通过针对每个受试者调整不同类型的分类器,准确率进一步提高,达到 76.4%。我们进一步缩小模型,将其量化为混合精度表示,准确率损失分别仅为 1% 和 1.4%,但仍比最先进的嵌入式卷积神经网络高出 4.1%。我们在低功耗 MCU 上实现了该模型,能量预算仅为 198 µ J,每次分类仅需 16.9 毫秒。连续对样本进行分类,将 3.5 秒样本重叠 50% 以避免遗漏用户输入,这样仅需 85 µ W 即可运行。与嵌入式 MI-BMI 中的相关工作相比,我们的解决方案在近传感器分类的准确度-能量权衡方面树立了新的领先地位。
主要关键词