Loading...
机构名称:
¥ 6.0

包括 H 2 在内的可再生气体将成为全球能源系统的重要组成部分,旨在到 2050 年实现温室气体 (GHG) 净零排放,与 2015 年《巴黎气候变化协定》中 1.5°C 的目标相一致。IEA 最新发布的 2050 年净零排放情景表明,在严格的温室气体减缓逻辑下,化石气体供应将在 2020 年代中期达到峰值,并在 2050 年之前减少。与此同时,可再生气体(生物甲烷、H 2 、基于 H 2 的合成甲烷)必须大​​幅增加。重点分析了可再生气体在 2030-2050 年国家温室气体减排政策中的作用以及 2030-2050 年所需数量的相应估计值 3 。所有这些国家(俄罗斯除外)都表示需要在 2030-2050 年期间使用氢气实现经济脱碳,氢气对于实现《巴黎协定》规定的国家承诺具有重大贡献。大多数国家战略和路线图都将氢气视为克服电气化限制和帮助稳定电网的一种手段,以应对不断增长的可再生能源发电(尤其是太阳能和风能)。一些氢气战略解决了长期能源储存需求在弥补可再生电力发电季节性变化方面的潜在作用。一些国家表示他们计划在 2030 年及以后出口氢气,而其他国家则计划进口氢气。除了贸易之外,大多数战略还侧重于国内难以减排的行业的氢气应用,即可再生电气化减排温室气体受到阻碍的行业,例如化学工业、炼钢和运输(航空、长途公路、航运)。几乎所有国家的战略和路线图都强调了现有天然气基础设施在未来 H2 输送和分配中的作用,并将 H2 集群视为在工业和区域 H2 网络中使用 H2 的重要一步。

可再生气体——电网中的氢气

可再生气体——电网中的氢气PDF文件第1页

可再生气体——电网中的氢气PDF文件第2页

可再生气体——电网中的氢气PDF文件第3页

可再生气体——电网中的氢气PDF文件第4页

可再生气体——电网中的氢气PDF文件第5页

相关文件推荐