数字孪生 (DT) 是最新的使能技术之一,它作为数据密集型网络计算解决方案出现在多个领域——从工业 4.0 到互联健康(Pires 等人,2019 年;Bagaria 等人,2020 年;Juarez 等人,2021 年;Phanden 等人,2021 年)。DT 作为一个虚拟系统,用于复制、监控、预测和改进物理系统(物理孪生 (PT))的流程和特性,与其 DT 实时连接(Grieves 和 Vickers,2017 年;Kaur 等人,2020 年;Mourtzis 等人,2021 年;Volkov 等人,2021 年)。这种技术基于物联网 (IoT) 和机器学习 (Kaur et al., 2020) 等领域的进步,提出了应对人机交互 (HRI) (Pairet et al., 2019) 领域等复杂系统问题的新方法。本立场文件旨在提出一种物理-数字孪生方法,以根据神经人体工程学的跨学科视角 (Parasuraman, 2003; Frederic et al., 2020) 改善对 HRI 背景下 PT 的理解和管理。
主要关键词