摘要:负荷预测是电力供应商最常用的一种策略,用于预测随时满足市场动态所需的电力或能量。电力负荷预测是电力公司发展中的一个重要过程,在电力容量分配和电力结构组织中也扮演着重要的角色;因此,它越来越受到研究者的关注。因此,电力需求预测的可靠性对于电力资源规划和电力管理系统至关重要。市场研究中数据库文件的不断增加以及数据处理,迫切需要开发一种有效的工具流程,以便从可访问的大量数据集中获取隐藏的、关键的负荷预测信息。作为计算机工程的一个潜在子集,许多机器学习技术非常适合解决这个问题。本文除了算法之外,还提供了权威权重预测实践的印象。尽管所有研究方法都很复杂,但评估表明,回归分析本身经常用于长期预测,并且经济实惠。机器学习或人工智能方法(如神经网络、支持向量机和模糊逻辑)是短期估计的理想选择。关键词:人工神经网络 (ANN)、负荷需求预测、预测方法和算法、时间序列简介预测是电力系统的重要组成部分。预测系统现在用于风力发电 (Seemant & Ling, 2021) 和风速 (Tiwari, 2022)。预测电力负荷也有利于电网和电力公司。电力是一种环保且经济高效的能源,在我们的日常生活中不可或缺 (Lin Y. et al., 2017)。电力的重要性最近急剧增加,这也成为研究的一个重要问题 (Nalcaci et al., 2018)。此外,与天然气、焦炭和石油等其他传统电力来源相比,电能更适合环保意识强的社区的需求,也更有效。此外,能源作为一种产品不同于物质商品,因为它不能大量储存,必须尽快生产。此外,由于电力行业的自由化,包括能源过剩和短缺,能源销售量变得复杂,这可能导致预测错误和严重的资金损失。此外,随着世界人口的增长和生活条件的改善,世界能源消耗预计将猛增。此外,工业正在扩张,电器产品的使用也在增加,包括微电网、电动汽车等技术的进步,以及可再生能源的生产。所有这些问题都与电网综合体的管理有关(Khamaira 等人,2018 年)。因此,在选择发电时,预测能源需求至关重要。预测需求的最大问题是选择合适的方法。随着电力使用量每年以 4% 到 7% 的速度增长,多种因素已成为发电生产的主导因素。长期以来,预测能源需求一直因管理客户需求、新活动和维护电力系统而受到批评。以能源形式使用电力被称为电网。电力成本、消耗和对化石燃料的依赖都在稳步上升。
主要关键词