量子计算助力气候行动
机构名称:
¥ 2.0

此外,量子计算机可以精确计算系统,而成熟的计算化学方法的近似会导致结果出现重大错误。使用经典量子化学特别难以模拟的系统是高度相关的电子系统,其中所谓的 Born-Oppenheimer 近似(假设原子核固定,与电子的位置无关)无效。这对于气候友好型技术的开发尤其有意义,因为高度相关的电子系统显示出有希望的应用,例如在电池中的电极材料或催化剂中。Born-Oppenheimer 近似被发现是无效的,例如在某些使用光合作用的生物系统中。因此,摆脱这种近似的必要性可以让我们更好地理解自然光合作用。

量子计算助力气候行动

量子计算助力气候行动PDF文件第1页

量子计算助力气候行动PDF文件第2页

量子计算助力气候行动PDF文件第3页

量子计算助力气候行动PDF文件第4页

量子计算助力气候行动PDF文件第5页

相关文件推荐

行动 量子计算指数
量子计算5
2020 年
¥3.0
量子计算
2023 年
¥1.0
量子计算
2024 年
¥4.0
量子计算
2020 年
¥2.0
量子计算8。
2020 年
¥5.0
量子计算
2021 年
¥2.0
量子计算
2022 年
¥1.0
量子计算
2024 年
¥1.0
量子计算
2023 年
¥1.0
量子计算
2024 年
¥5.0
量子计算
2023 年
¥1.0
量子计算
2021 年
¥1.0
量子计算
2020 年
¥3.0
量子计算
2022 年
¥2.0
量子计算
2022 年
¥3.0
量子计算
2021 年
¥9.0
量子计算
2023 年
¥1.0
量子计算
2022 年
¥8.0
量子计算
2023 年
¥3.0
量子计算
2023 年
¥1.0
量子计算
2023 年
¥1.0
量子计算是
2023 年
¥3.0
量子计算
2023 年
¥2.0
量子计算
2023 年
¥1.0
量子计算
2022 年
¥3.0
量子计算
2024 年
¥6.0
量子计算
2023 年
¥3.0
量子计算
2023 年
¥1.0