摘要 - 计算pangenomics是一种新兴领域,使用图形结构封闭多个基因组研究遗传变异。可视化Pangenome图对于理解基因组多样性至关重要。然而,由于图布局过程的高计算需求,处理大图可能具有挑战性。在这项工作中,我们对最先进的pangenome图布局算法进行了彻底的性能特征 - 揭示了显着的数据级并行性,这使GPU成为计算加速度的有前途的选项。但是,不规则的数据访问和算法的内存性质具有重大障碍。为了克服这些挑战,我们开发了一种实施三个关键优化的解决方案:对缓存友好的数据布局,合并的随机状态和经纱合并。另外,我们提出了一个定量度量标准,用于可扩展对Pangenome布局质量的评估。对24个人类全染色体pangenomes进行了评估,我们的基于GPU的解决方案在没有布局的质量损失的情况下,在the-Art MultineReaded CPU基线上实现了57.3倍的速度,从而将执行时间从数小时减少到数分钟。索引术语 - Pangenomics,生物信息学,图形布局,GPU加速度
主要关键词