Loading...
机构名称:
¥ 1.0

俄勒冈州有两个地热发电厂。第一个于2010年完成,是克拉马斯瀑布(Klamath Falls)的1.75兆瓦设施,该设施为俄勒冈理工学院提供现场发电和空间供暖。第二个于2012年完成,是Vale附近的Neal Hot Springs地热发电厂。该设施的容量为22兆瓦,并为爱达荷州的电力提供电力。1自1981年以来,克拉马斯瀑布市自1964年以来就使用了地热区的地热区供暖系统。2 3湖景镇还为市中心供暖区使用地热能,并于2023年获得俄勒冈能源部的社区可再生能源开发赠款,以评估系统扩展的可行性。4附近,华纳溪惩教所使用地热井来提供空间供暖和家用热水。5这些设施位于马尔海尔,湖和克拉马斯县,展示了俄勒冈州的地热资源如何使该州一些最农村社区受益。

Ener Gy Resours&Tec Hno log y R Eviews

Ener Gy Resours&Tec Hno log y R EviewsPDF文件第1页

Ener Gy Resours&Tec Hno log y R EviewsPDF文件第2页

Ener Gy Resours&Tec Hno log y R EviewsPDF文件第3页

Ener Gy Resours&Tec Hno log y R EviewsPDF文件第4页

Ener Gy Resours&Tec Hno log y R EviewsPDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0
2025 年
¥2.0
2023 年
¥1.0
2022 年

b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'

¥2.0