Loading...
机构名称:
¥ 1.0

我的研究重点是开发可解释的机器学习算法和管道,以促进人类模型的相互作用,以解决高风险决策问题。我解决了可解释的机器学习中的基本问题,使非常简单的模型以非常快速且可扩展的方式实现与黑匣子相当的性能。我引入了一种用于机器学习的新范式,称为学习Rashomon集,以通过在最佳损失的ε中找到和存储所有模型,从而破坏用户和ML算法之间的交互瓶颈。我已经在神经,ICML,AAAI,AISTATS,IEEE VIS和统计数据中发表了多篇论文。北卡罗来纳州学术大学,位于北卡罗来纳州教堂山教堂山的北卡罗来纳州教授助理教授2024年7月 - 数据科学与社会运营学院研究教育教育教育杜克大学达勒姆大学达勒姆大学,北卡罗来纳州博士。在计算机科学2020 - 2024论文中:解释性和多样性:通往可信赖的机器学习的途径M.S.统计科学2018 - 2020年北卡罗来纳大学教堂山教堂山北卡罗来纳州北卡罗来纳州 统计和信息科学2014 - 2018年选定统计科学2018 - 2020年北卡罗来纳大学教堂山教堂山北卡罗来纳州北卡罗来纳州统计和信息科学2014 - 2018年选定

Chudi Zhong

Chudi ZhongPDF文件第1页

Chudi ZhongPDF文件第2页

Chudi ZhongPDF文件第3页

相关文件推荐