摘要。在侧通道分析(SCA)中,攻击的成功在很大程度上取决于数据集大小以及每个类中的实例数。合成痕迹的产生可以帮助改善诸如分析攻击之类的问题。但是,从实际痕迹中手动创建合成迹线很难。因此,迫切需要自动化这一过程的人造痕迹。最近,在创建逼真的图像中击败了另一个称为生成对抗网络(GAN)的生成模型后,扩散模型获得了很多认识。我们探讨了SCA领域中扩散模型的用法。我们为已知的掩码设置和未知掩模设置提供了框架,其中可以应用扩散模型。在已知的面具设置下,我们表明在拟议的框架下生成的痕迹保留了原始泄漏。接下来,我们证明了在未知掩码设置中创建的分析数据可以减少所需的攻击痕迹以进行分析攻击。这表明,从训练有素的扩散模型中创建的艺术品创建的分析数据包含要利用的有用泄漏。