Loading...
机构名称:
¥ 1.0

上下文。随着天文调查产生的数据量的越来越多,自动分析方法已变得至关重要。合成数据是开发和测试此类方法所必需的。当前模拟的经典方法通常从不可能的细节或源类型出现的不准确表示。深层生成建模已成为综合现实图像数据以克服这些定义的新方法。目标。,我们实施了一个深入的生成模型,该模型对观测值进行了训练,以产生逼真的射电星系图像,并完全控制了频道和源形态。方法。我们使用了一个分散模型,该模型经过连续的时间步骤训练,以减少采样时间而没有质量损害。这两个模型分别在两个不同的数据集上进行了培训。一组是从Lofar两米高调查(Lots)的第二个数据发布中获得的图像选择。该模型在重新缩放图像像素值后保留信号强度信息的峰值条件。另一个较小的集合是从非常大的阵列(VLA)调查中,对二十秒(第一个)的无线电天空的微弱图像进行了调查。在该集合中,每个图像都带有形态学类标签。有条件的抽样是通过无分类的分解指导实现的。,我们通过比较了实际数据和生成数据的不同数量的分布来评估生成的图像的质量,包括来自标准源填充算法的结果。结果。通过培训分类器并比较其在实际数据和生成的数据上的性能来评估类调节。我们已经能够使用25个采样步骤来生成高质量的逼真图像,这在射电天文学领域是前所未有的。生成的图像在视觉上与训练数据无法区分,并且已成功复制了不同图像指标的分布。分类器显示出对真实图像和生成的图像的表现同样出色,表明对形态源特性的强烈采样控制。

使用扩散模型模拟射电星系的图像

使用扩散模型模拟射电星系的图像PDF文件第1页

使用扩散模型模拟射电星系的图像PDF文件第2页

使用扩散模型模拟射电星系的图像PDF文件第3页

使用扩散模型模拟射电星系的图像PDF文件第4页

使用扩散模型模拟射电星系的图像PDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0