技术和理论进步使Qudit国家在量子信息和组合中必不可少。量子算法代表了现代量子信息理论领域中的一个突出应用,为计算加速度提供了经典系统不可能实现的潜力。一种实现量子算法的著名方法涉及创建特定类型的异常纠缠的图形状态。超图状态,也称为多部分纠缠状态或高阶纠缠状态,是量子状态,它们将纠缠概念扩展到钟形状态或图形状态中通常发现的成对相关性之外。他们提供了一个平台来概括最初针对Qubit状态的想法。因此,例如,Qudit状态已在量子传送[1-3],量子计算[4 - 6],量子步行[7 - 9]和量子状态转移[10-12]中发现了应用。量子系统始终受到与环境环境相互作用的噪声的影响[13]。因此,对在嘈杂条件下进化的Qudit国家动态的研究是一个相关问题,我们在这里进行了研究。Qudits是Qubits的较高维度概括,在量子科学和技术的几个领域中变得越来越重要[14,15]。噪声在任何物理系统中总是不可避免的现象。特别是量子噪声具有非常特殊的特征,其效果通过非可逆操作员表征。在本文中,我们专注于研究噪声如何影响量子状态。为了研究噪声对状态的影响,应了解相应的量子通道的特征。量子通道由适当的kraus操作员表示。保真度是对此有用的诊断。我们研究的量子通道是dit-Flip噪声,相位翻转噪声,DIT相相位噪声,去极化噪声,ADC(非马克维亚噪声),非马克维亚倾向噪声和非马克维亚去极化噪声[16,17]。这些通道最初被定义为适用于Qubit。dit-Flip噪声,相位翻转噪声,DIT相相翻噪声和去极化噪声被推广到[3]中的Qudit状态。遵循此方向,我们将Qudits上的ADC(非马尔可夫噪声),非马克维亚式Dephasing和非Markovian去极化噪声进行了推广。针对这些通道中的每个通道计算了原始状态和最终状态之间的忠诚度的分析表达。这有助于根据量子状态评估噪声的影响。连贯性是大多数
主要关键词