Loading...
机构名称:
¥ 1.0

本文研究了广义量子态,即C ∗ -代数上的正线性泛函和归一化线性泛函。首先,我们研究了正常态,即用密度算子表示的状态,以及奇异态,即不能用密度算子表示的状态。利用GNS构造,即Gelfand,Neumark和Segal关于C ∗ -代数表示论和投影理论的基本结果,给出了将有界线性泛函分解为量子态的方法。其次,给出了它在量子信息论中的应用。我们研究了协变克隆子,即Heisenberg和Schr¨odinger图像中的量子信道,它们通过移位而协变,并证明了最优克隆子不能有奇异分量。最后,我们讨论了Gelfand-Pettis积分意义下的纯态表示。我们还在本文的不同部分给出了物理解释和例子。

论量子理论的状态

论量子理论的状态PDF文件第1页

论量子理论的状态PDF文件第2页

论量子理论的状态PDF文件第3页

论量子理论的状态PDF文件第4页

论量子理论的状态PDF文件第5页