Loading...
机构名称:
¥ 3.0

分析和学习时空数据集是许多领域的重要过程,包括交通运输、医疗保健和气象学。特别是,环境中的传感器收集的数据使我们能够理解和模拟环境中的过程。最近,收集的时空数据量显著增加,给数据科学家带来了一些挑战。因此,需要采取措施减少需要处理的数据量,以便分析和学习时空数据集。在本文中,我们提出了 k 维时空缩减方法 ( k D-STR ),以减少用于存储数据集的数据量,同时允许对缩减后的数据集进行多种类型的分析。 k D-STR 使用分层分区来查找相似实例的时空区域,并对每个区域内的实例进行建模以总结数据集。我们用三个表现出不同时空特征的数据集证明了 k D-STR 的通用性,并展示了一系列数据建模技术的结果。最后,我们将 k D-STR 与其他减少时空数据量的技术进行了比较。我们的结果表明,k D-STR 可有效减少时空数据,并可推广到具有不同属性的数据集。

一种时空数据缩减与建模方法

一种时空数据缩减与建模方法PDF文件第1页

一种时空数据缩减与建模方法PDF文件第2页

一种时空数据缩减与建模方法PDF文件第3页

一种时空数据缩减与建模方法PDF文件第4页

一种时空数据缩减与建模方法PDF文件第5页