创造力一直从技术创新中受益[14],包括机器学习的最新进展 - 例如,用于文本,图像,音频和视频的强大生成模型。但是,除了具有备受瞩目的应用程序外,重要的杂志工作仍然存在很大的差距,因为那些具有文化,艺术家和行为考虑因素或重点的人尚未从这些机器学习方面的进步中得到充分提高。这提出了挑战,尤其是在提出设计师对系统行为或文化考虑的酌处权时。在我的研究中,我旨在将计算方法与艺术家,文化,人文学科和设计师的考虑相结合,以在机器学习可以帮助促进表演的同时满足这些方式。为此,我提出了技术和工具,这些技术和工具都可以满足创意设置的需求以及核心机器学习的进步。它们包括1)通过设计师的自由裁量权生成抗tifacts,2)机器学习增强了用于历史和文化数据的工具,以及3)有关进化策略,最佳运输,语言和图形学习的前进机器学习技术和工具。
主要关键词