摘要。目标。与传统数字计算相比,神经系统中的计算使用不同的计算原语,在不同的硬件上运行,因此在使用时间、空间和能量等物理资源方面受到与数字计算不同的约束。为了更好地理解具有类似时空和能量约束的物理介质上的神经计算,神经形态工程领域旨在设计和实现电子系统,在 VLSI 硬件中模拟神经系统在多个生物组织层面的组织和功能,从单个神经元到大型电路和网络。混合模拟/数字神经形态 VLSI 系统结构紧凑、功耗低,并且独立于模型大小和复杂性实时运行。方法。本文重点介绍了当前在从突触到系统级的多个生物组织层面上将神经形态系统与神经系统进行接口的努力,并讨论了未来具有更复杂神经形态电路的生物混合系统的前景。主要结果。单个硅神经元已成功与无脊椎动物和脊椎动物神经网络接口。这种方法允许研究传统技术无法获得的神经特性,同时提供传统数值建模方法无法实现的真实生物学背景。在网络层面,神经元群有望与数百或数千个硅神经元的神经形态处理器进行双向通信。最近对 BMI 的研究表明,使用当前的神经形态技术可以实现这一点。意义。生物神经元和各种复杂程度的 VLSI 神经形态系统之间的生物混合接口已开始出现在文献中。当前神经形态系统的主要目的是作为研究与神经动力学相关的基本问题的计算工具,其复杂性现在允许与大型神经网络和电路直接接口,从而为神经工程系统、神经假体和神经康复带来潜在的有趣的临床应用。
主要关键词