每周回顾 2025 年 1 月 3 日

我上周在推特上发布的一些有趣的链接(我也在 Mastodon、Threads、Newsmast 和 Bluesky 上发布了这些链接):通过量化降低 AI 模型复杂性有一个极限,业界可能已经达到了这个极限:https://techcrunch.com/2024/12/23/a-popular-technique-to-make-ai-more-efficient-has-drawbacks/AI 如何帮助改善活动中的交流:https://dataconomy.com/2024/12/24/how-ai-is-turning-networking-into-a-science-of-connection/AI 基础知识:https://www.kdnuggets.com/artificial-intelligence-noobsAI 是由数据构建的,它们是终极的垃圾进垃圾出机器:https://www.informationweek.com/data-management/data-quality-the-strategic-imperative-driving-ai-and-automationAI 是推动科技行业工会化的因素:https://arstechnica.com/tech-policy/2024/12/from-ai-to-rto-unpopular-policies-may-fuel-tech-worker-movements-in-2025/医学和医学研究中的假设驱动人工智能:https://www.datasciencecentral.com/the-role-of-hypothesis-driven-ai-in-medical-research/使用一个人工智能来改进另一个人工智能几乎是一场竞相压价的竞争:https://techcrunch.com/2024/12/24/google-is-using-anthropics-claude-to-improve-its-gemini-ai/有人会对人工智能搜索会被诱骗提供误导性信息感到惊讶吗? https://techcrunch.com/2024/12/26/chatgpt-search-can-be-tricked-into-misleading-users-new-research-reveals/人工智能改善零售业的方式:https://www.bigdatawire.com/2024/12/19/why-th

来源:计算智能