Vxceed secures transport operations with Amazon Bedrock
aws与VXCECE合作支持其AI策略,从而开发了limoconnect Q,这是一种创新的地面运输管理解决方案。 VXCEED使用AWS服务,包括Amazon Bedrock和Lambda,成功地建立了一个安全的AI驱动解决方案,以简化Trip Trip预订和文档处理。
Improve Amazon Nova migration performance with data-aware prompt optimization
在这篇文章中,我们提出了LLM迁移范式和体系结构,包括连续的模型评估过程,使用Amazon Bedrock及时生成,以及数据吸引的优化。该解决方案在迁移之前评估模型性能,并使用用户提供的数据集和目标指标迭代优化Amazon Nova模型提示。
Customize Amazon Nova models to improve tool usage
在这篇文章中,我们演示了与Amazon Nova一起使用的模型自定义(微调)。我们首先引入工具用例用例,并提供有关数据集的详细信息。我们介绍了亚马逊NOVA特定数据格式的详细信息,并展示了如何通过Converse进行工具并在Amazon Bedrock中调用API。在获得亚马逊NOVA模型的基线结果后,我们详细解释了微调过程,托管带有配置吞吐量的微型模型,并使用微调的Amazon Nova模型进行推理。
Use Amazon Bedrock Intelligent Prompt Routing for cost and latency benefits
今天,我们很高兴地宣布亚马逊基岩智能及时路由的一般可用性。在这篇博客文章中,我们详细介绍了内部测试的各种亮点,如何开始,并指出一些警告和最佳实践。我们鼓励您将Amazon Bedrock智能及时路由纳入您的新的和现有的生成AI应用程序中。
Build a location-aware agent using Amazon Bedrock Agents and Foursquare APIs
在这篇文章中,我们将Amazon Bedrock代理商和FourSquare API结合在一起,以演示如何使用位置感知的代理为您的用户带来个性化的响应。
Automating regulatory compliance: A multi-agent solution using Amazon Bedrock and CrewAI
在这篇文章中,我们探讨了AI代理如何使用亚马逊基岩和Crewai简化合规性并满足金融机构的监管要求。我们演示了如何构建一个可以自动汇总新法规,评估其对操作的影响并提供规范性技术指导的多代理系统。您将学习如何使用Crewai使用Amazon Bedrock知识库和Amazon Bedrock代理商来创建全面的自动合规解决方案。
Generate compliant content with Amazon Bedrock and ConstitutionalChain
在这篇文章中,我们探讨了使用宪法AI的实用策略,以有效而有效地使用Amazon Bedrock和Langgraph生产合规性内容,以在金融和医疗保健等高度受监管的行业中建立宪法链接
Minimize generative AI hallucinations with Amazon Bedrock Automated Reasoning checks
为了提高大语模型(LLM)响应的事实准确性,AWS宣布Amazon Bedrock自动推理检查(在Gated Preview)上,网址为AWS RE:Invent 2024。在这篇文章中,我们讨论了如何帮助防止使用Amazon Bedrock自动化的推理检查来防止生成的AI幻觉。
Amazon Bedrock Guardrails宣布图像内容过滤器的一般可用性,使您能够在生成AI应用程序中调节图像和文本内容。在这篇文章中,我们讨论了如何从Amazon Bedrock Guardrails中使用图像内容过滤器开始。
Automate IT operations with Amazon Bedrock Agents
这篇文章提供了一个全面的AIOPS解决方案,结合了各种AWS服务,例如Amazon Bedrock,AWS Lambda和Amazon CloudWatch,以创建AI助理以进行有效的事件管理。该解决方案还使用亚马逊基础知识库和亚马逊基岩代理商。该解决方案使用亚马逊基岩的功能来实现能够监视IT系统,分析日志和指标并调用自动补救过程的智能代理的部署。
在这篇文章中,我们演示了如何在Sagemaker Unified Studio中使用Amazon Bedrock来构建生成AI应用程序,以与现有的端点和数据库集成。
在这篇文章中,我们探讨了为什么ASURE使用Amazon Web Services(AWS)呼叫后分析(PCA)管道,该管道以QuickSight的Amazon Bedrock和Amazon Q等生成AI驱动的服务(例如Amazon Bedrock和Amazon Q)的高级功能,在呼叫中心之间生成了见解。 ASURE之所以选择这种方法,是因为它提供了深入的消费者分析,围绕共同主题的呼叫成绩单分类,以及授权联络中心领导者使用自然语言来回答查询。这最终使ASURE为客户提供了产品和客户体验的改进。
医疗保健决策通常需要从多个来源(例如医学文献,临床数据库和患者记录)进行整合。 LLMS缺乏从这些多样化和分布式来源中无缝访问和合成数据的能力。这限制了他们为医疗保健应用提供全面且信息良好的见解的潜力。在这篇博客文章中,我们将探讨亚马逊基地上的Mistral LLM如何应对这些挑战,并能够通过LLM功能呼叫功能的智能医疗保健代理,同时通过亚马逊BedRock Guardrails保持强大的数据安全和隐私。
How GoDaddy built a category generation system at scale with batch inference for Amazon Bedrock
这篇文章概述了由For Godaddy(域注册商,注册表,网络托管和电子商务公司)开发的自定义解决方案,该公司试图通过使用生成AI为超过2100万客户提供个性化的业务洞察,以使企业家精神更加访问。在这项合作中,生成的AI创新中心团队使用Amazon Bedrock中的批处理创建了一种准确且具有成本效益的基于AI的解决方案,帮助GoDaddy改善了他们现有的产品分类系统。
Benchmarking customized models on Amazon Bedrock using LLMPerf and LiteLLM
这篇文章开始了一个博客系列,探索Amazon Bedrock自定义模型导入的DeepSeek和Open FMS。它涵盖了使用流行的开源工具:LLMPERF和LITELLM在亚马逊基岩中定制模型的性能基准测试过程。它包括一个笔记本,其中包含分步说明,以部署DeepSeek-R1-Distill-Lalama-8B型号,但是相同的步骤适用于Amazon Bedrock自定义模型导入的任何其他模型。
Revolutionizing customer service: MaestroQA’s integration with Amazon Bedrock for actionable insight
在这篇文章中,我们深入研究了Maestroqa的关键特征之一 - 转化分析,该特征有助于支持团队发现客户的关注点,解决摩擦点,适应支持工作流程以及通过使用亚马逊贝德洛克(Amazon Bedrock)来确定指导的领域。我们讨论了Maestroqa克服的独特挑战,以及他们如何使用AWS来构建新功能,推动客户见解并提高运营效率低下。
在这篇文章中,我们介绍了如何使用Amazon Rekognition自定义标签来构建FoodSavr解决方案(用于本文目的的虚拟名称),以检测成分并使用Antharpic的Claude 3.0在Amazon Bedrock上生成个性化食谱。我们演示了一个端到端的体系结构,用户可以上传冰箱的图像,并使用那里找到的成分(Amazon Rekognition检测到),该解决方案将为他们提供食谱列表(由Amazon Bedrock生成)。该体系结构还识别缺失的成分,并为用户提供附近杂货店的列表。
今天,亚马逊Web服务(AWS)宣布了亚马逊基岩知识库(GraphRag)的一般可用性,这是亚马逊基岩知识库中的能力,可增强Amazon Neptune Analytics中的图形数据,增强了检索效果的生成(RAG)。在这篇文章中,我们讨论了GraphRag的好处以及如何在Amazon Bedrock知识库中开始。