Innovating at speed: BMW’s generative AI solution for cloud incident analysis
在这篇文章中,我们解释了宝马如何使用生成AI加快云中复杂和分布式系统中事件的根本原因分析,例如宝马连接的车辆后端,可为2300万辆车辆提供服务。请继续阅读以了解该解决方案如何通过AWS和BMW进行协作,使用Amazon Bedrock Agents和Amazon CloudWatch日志和指标来更快地找到根本原因。这篇文章旨在用于云解决方案架构师和有兴趣加速其事件工作流程的开发人员。
Accelerate AWS Well-Architected reviews with Generative AI
在这篇文章中,我们探索了一种生成的AI解决方案,利用Amazon Bedrock简化WAFR过程。我们演示了如何利用LLM的力量构建智能,可扩展的系统,该系统可以分析体系结构文档并根据AWS良好的最佳实践产生洞察力的建议。该解决方案可自动化WAFR报告创建的一部分,帮助解决方案建筑师在支持其决策过程的同时提高建筑评估的效率和彻底性。
Dynamic metadata filtering for Amazon Bedrock Knowledge Bases with LangChain
Amazon Bedrock知识库具有元数据过滤能力,可让您根据文档的特定属性来完善搜索结果,从而提高检索准确性和响应的相关性。这些元数据过滤器可与典型的语义(或混合)相似性搜索结合使用。在这篇文章中,我们讨论了使用亚马逊基岩知识库的元数据过滤器。
Evaluate healthcare generative AI applications using LLM-as-a-judge on AWS
在这篇文章中,我们演示了如何使用亚马逊基岩实施此评估框架,比较了不同发电机模型的性能,包括Anthropic的Claude和Amazon Nova在Amazon Bedrock上进行比较,并展示如何使用新的RAG评估功能来优化知识基础参数并评估回收质量。
How to configure cross-account model deployment using Amazon Bedrock Custom Model Import
在本指南中,我们将带您浏览分步说明,以配置Amazon Bedrock自定义模型导入的跨账户访问,并涵盖了基于加密的不加密和AWS密钥管理服务(AWS KMS)的情况。
Transforming credit decisions using generative AI with Rich Data Co and AWS
Rich Data Co (RDC) 的使命是在全球范围内扩大可持续信贷的获取渠道。其软件即服务 (SaaS) 解决方案为领先的银行和贷方提供了深入的客户洞察和 AI 驱动的决策能力。在这篇文章中,我们讨论了 RDC 如何使用 Amazon Bedrock 上的生成式 AI 来构建这些助手并加速其实现民主化获取可持续信贷的总体使命。
Image and video prompt engineering for Amazon Nova Canvas and Amazon Nova Reel
亚马逊在 Amazon Bedrock 上推出了两种新的创意内容生成模型:用于图像生成的 Amazon Nova Canvas 和用于视频创作的 Amazon Nova Reel。这些模型将文本和图像输入转换为自定义视觉效果,为专业和个人项目开辟了创意机会。Nova Canvas 是一种最先进的图像生成模型,可创建专业级图像 [...]
Implement RAG while meeting data residency requirements using AWS hybrid and edge services
在本文中,我们展示了如何将 Amazon Bedrock Agents 扩展到混合和边缘服务(例如 AWS Outposts 和 AWS Local Zones),以使用本地数据构建分布式检索增强生成 (RAG) 应用程序,从而改善模型结果。借助 Outposts,我们还涵盖了完全本地 RAG 应用程序的参考模式,该应用程序需要基础模型 (FM) 和数据源都驻留在本地。
Evaluate large language models for your machine translation tasks on AWS
这篇博客文章及其附带代码介绍了一种解决方案,可使用 Amazon Bedrock 中的基础模型 (FM) 试验实时机器翻译。它可以帮助收集更多有关 LLM 对您的内容翻译用例的价值的数据。
在本文中,我们通过自动执行以下任务来说明生成式 AI 在 Tealium 与 AWS 生成式 AI 创新中心 (GenAIIC) 团队合作中的重要性:1/ 基于由 Amazon Bedrock 提供支持的 Ragas 存储库评估 RAG 系统的检索器和生成的答案,2/ 使用基于 Auto-Instruct 存储库的自动提示工程技术为每个问答对生成改进的指令。指令是指给予模型以指导生成响应的一般方向或命令。这些指令是使用 Amazon Bedrock 上的 Anthropic 的 Claude 生成的,4/ 为基于人机交互的反馈机制提供 UI,以补充由 Amazon Bedrock 提供支持
Search enterprise data assets using LLMs backed by knowledge graphs
在本文中,我们将介绍一种生成式 AI 驱动的语义搜索解决方案,使业务用户能够快速准确地在各种企业数据源中找到相关数据资产。在此解决方案中,我们集成了托管在 Amazon Bedrock 上的大型语言模型 (LLM),这些模型由基于 Amazon Neptune 构建的知识图谱派生的知识库提供支持,以创建强大的搜索范例,使基于自然语言的问题能够集成对存储在 Amazon Simple Storage Service (Amazon S3) 中的文档、托管在 AWS Glue 数据目录中的数据湖表以及 Amazon DataZone 中的企业资产的搜索。
AWS achieves ISO/IEC 42001:2023 Artificial Intelligence Management System accredited certification
Amazon Web Services (AWS) 很高兴成为第一家宣布以下 AI 服务获得 ISO/IEC 42001 认证的主要云服务提供商:Amazon Bedrock、Amazon Q Business、Amazon Textract 和 Amazon Transcribe。ISO/IEC 42001 是一项国际管理系统标准,概述了组织促进负责任地开发和使用 AI 系统的要求和控制。
Revolutionizing knowledge management: VW’s AI prototype journey with AWS
我们很高兴与大家分享大众汽车集团(汽车行业的创新者和欧洲最大的汽车制造商)的历程,他们利用生成式人工智能、Amazon Bedrock 和 Amazon Kendra 设计了基于检索增强生成 (RAG) 的解决方案,让用户更轻松地访问内部信息,从而增强了知识管理。该解决方案可有效处理包含文本和图像的文档,从而显著增强了大众汽车集团在其生产领域的知识管理能力。
在本文中,我们探讨了 Principal 如何使用 QnABot 与 Amazon Q Business 和 Amazon Bedrock 配对来创建 Principal AI 生成式体验:一种用户友好、安全的内部聊天机器人,可更快地访问信息。使用生成式 AI,Principal 的员工现在可以专注于更深入的基于人类判断的决策,而不是花时间手动从数据源中搜索答案。
Empower your generative AI application with a comprehensive custom observability solution
在本文中,我们为 Amazon Bedrock 应用程序的可观察性和评估设置了自定义解决方案。通过代码示例和分步指导,我们演示了如何将此解决方案无缝集成到您的 Amazon Bedrock 应用程序中,为您的生成式 AI 应用程序解锁新的可见性、控制和持续改进水平。
Generative AI-powered technology operations
在本文中,我们将介绍 AWS 生成式 AI 解决方案(包括 Amazon Bedrock、Amazon Q Developer 和 Amazon Q Business)如何进一步提高 TechOps 生产力、缩短解决问题的时间、增强客户体验、标准化操作程序并扩充知识库。
How Vidmob is using generative AI to transform its creative data landscape
在本文中,我们将说明创意数据公司 Vidmob 如何与 AWS 生成式 AI 创新中心 (GenAIIC) 团队合作,使用 Amazon Bedrock 在创意数据中大规模发现有意义的见解。