卡洛斯·迪亚兹·罗西洛(CarlosDíaz-Rosillo)博士是前副副副部长,西半球事务和代理校长国际安全事务国防部长。他负责监督与国家有关的国际安全战略和政策的发展,协调和执行
Thomas(Tom)Muir以前被任命为2021年1月11日的临时行政和管理局长。作为前董事,他负责对一致的国防机构和现场活动的日常整合和监督,并支持国家资本和五角大楼保留的指定组织和设施。John M. Tenaglia先生担任美国战争部(DOW)战争部长办公室内的国防定价和签约(DPC)首席主任。他负责与年度合同义务300亿美元相关的定价和签约政策事项。作为陶氏30,000多个合同和购买的职能领导者
Deploy a Deep Learning model as a web application using Flask and Tensorflow
如何使用 Flask 将使用 Tensorflow 构建的深度学习模型公开为 API。了解如何构建 Web 应用程序以向用户提供模型,以及如何使用 HTTP 客户端向其发送请求。
Distributed Deep Learning training: Model and Data Parallelism in Tensorflow
如何使用镜像策略、参数服务器和中央存储等分布式方法在多个 GPU 或机器中训练数据。
Gregory M. Kausner是高级执行局的职业成员,前者履行了国防部长收购和维持的职责(PTDO USD(A&S))。在这个职位上,他对国防部长负责与收购有关的所有事项;合同管理;物流和物资准备;安装和环境;
How to build a custom production-ready Deep Learning Training loop in Tensorflow from scratch
使用检查点和 Tensorboards 可视化在 Tensorflow 和 Python 中构建自定义训练循环
Jacqueline A. Ferko女士曾在国防部长办公室(OSD)领导局的主要顾问,涉及与主要武器系统的准备和可持续性有关的政策,程序和行动。她负责制定和实施收购和维持策略,政策和流程,以提供战士
How to Unit Test Deep Learning: Tests in TensorFlow, mocking and test coverage
使用 tf.test() 探索 TensorFlow 代码中的单元测试、模拟和修补对象、代码覆盖率以及机器学习应用程序中测试用例的不同示例
A first look at federated learning with TensorFlow
“联合学习”一词是为了描述一种分布式模型训练形式而创造的,其中数据保留在客户端设备上,即永远不会发送到协调服务器。在这篇文章中,我们介绍了核心概念,并使用 R 运行了 TensorFlow Federated 的首次实验。
NumPy-style broadcasting for R TensorFlow users
广播,就像 Python 的科学计算库 NumPy 所做的那样,涉及动态扩展形状,以便可以将不同大小的数组传递给需要一致性的操作 - 例如逐元素添加或乘法。在 NumPy 中,广播的工作方式是精确指定的;同样的规则适用于 TensorFlow 操作。对于偶尔查阅 Python 代码的任何人,这篇文章都力求解释清楚。
First experiments with TensorFlow mixed-precision training
上周发布的 TensorFlow 2.1 允许进行混合精度训练,利用最新的 NVidia GPU 中提供的 Tensor Cores。在这篇文章中,我们报告了第一批实验结果,并提供了有关这一切的背景信息。
Differential Privacy with TensorFlow
差异隐私保证数据库查询的结果基本上与单个个体在数据中的存在无关。应用于机器学习,我们预计没有任何单个训练示例会以实质性的方式影响训练模型的参数。这篇文章介绍了 TensorFlow Privacy,这是一个基于 TensorFlow 构建的库,可用于从 R 训练差分隐私深度学习模型。
tfhub: R interface to TensorFlow Hub
TensorFlow Hub 是一个用于发布、发现和使用机器学习模型可重用部分的库。模块是 TensorFlow 图的一个独立部分,连同其权重和资产,可以在称为迁移学习的过程中在不同任务中重复使用。
TensorFlow 2.0 is here - what changes for R users?
TensorFlow 2.0 终于在上周发布了。作为 R 用户,我们有两种问题。首先,我的 keras 代码还能运行吗?其次,有什么变化?在这篇文章中,我们将回答这两个问题,然后介绍 r-tensorflow 生态系统中令人兴奋的新发展。
So, how come we can use TensorFlow from R?
您是否曾经想过为什么可以从 R 调用 TensorFlow(通常称为 Python 框架)?如果没有 - 那应该是这样的,因为 R 包 keras 和 tensorflow 旨在使这个过程对用户尽可能透明。但要让它们成为这些有用的精灵,首先必须有人驯服 Python。
TensorFlow feature columns: Transforming your data recipes-style
TensorFlow 特征列提供了有用的功能,可用于预处理分类数据和链接转换,例如分桶或特征交叉。从 R 中,我们以流行的“配方”风格使用它们,创建并随后完善特征规范。在这篇文章中,我们展示了如何使用特征规范释放认知资源并让您专注于真正想要完成的事情。更重要的是,由于其优雅,特征规范代码读起来很好,编写起来也很有趣。
Rajat Monga 是 Google 的工程总监,领导 TensorFlow 团队。如果您想获取有关此播客的更多信息,请访问 https://lexfridman.com/ai 或在 Twitter、LinkedIn、Facebook、Medium 或 YouTube 上与 @lexfridman 联系,您可以在那里观看这些对话的视频版本。