How to Eliminate Impermanent Loss
一般而言,市场是有效的,因为日内交易很难获得高于平均水平的回报,而且大多数共同基金的表现都低于市场加权 ETF。然而,从历史上看,在各种应用中,期权数十年来一直被低估。例如,早在 20 世纪 60 年代,资产回报分布就比对数正态分布具有更厚的尾部(参见 Benoit Mandelbrot ('62) 或 Eugene Fama (' 65))。然而,大多数期权做市商都应用了基本的 Black-Scholes 和单一波动率参数,这低估了价外期权。在一天之内,即 1987 年 10 月 19 日,股市下跌了 17%,使用 Garch 波动率估计,这是一个 7.9 标准差事件。从贝叶斯的角度来看,这
Averaged One-Dependence (AODE) Algorithm and its Use in Machine Learning
为什么重要:平均一依赖估计器是朴素贝叶斯分类器的扩展,它放宽了“朴素性”并允许复杂的特征关系。在本文中,我们探讨了算法的概念、背后的数学以及 Python 中的自定义实现。
Stanford AI Lab Papers and Talks at ICLR 2022
2022 年国际学习表征会议 (ICLR) 将于 4 月 25 日至 4 月 29 日以线上方式举办。我们很高兴与大家分享 SAIL 的所有成果,您可以在下面找到论文、视频和博客的链接。欢迎直接联系作者,了解更多有关斯坦福大学的工作!已接受论文列表自主强化学习:形式主义和基准测试作者:Archit Sharma*、Kelvin Xu*、Nikhil Sardana、Abhishek Gupta、Karol Hausman、Sergey Levine、Chelsea Finn联系方式:architsh@stanford.edu链接:论文 |网站关键词:强化学习、持续学习、免重置强化学习MetaS
Stanford AI Lab Papers and Talks at ICLR 2022
2022 年国际学习表征会议 (ICLR) 将于 4 月 25 日至 4 月 29 日以线上方式举办。我们很高兴与大家分享 SAIL 的所有成果,您可以在下面找到论文、视频和博客的链接。欢迎直接联系作者,了解更多有关斯坦福大学的工作!已接受论文列表自主强化学习:形式主义和基准测试作者:Archit Sharma*、Kelvin Xu*、Nikhil Sardana、Abhishek Gupta、Karol Hausman、Sergey Levine、Chelsea Finn联系方式:architsh@stanford.edu链接:论文 |网站关键词:强化学习、持续学习、免重置强化学习MetaS
年轻的 TPU 科学家 Boris Pyakilla 正在致力于创建一种机器学习算法,能够构建预测小型有机化合物分子特性的模型。它基于人工智能方法和概率论贝叶斯方法的集成。未来,该算法可用于开发药物和农业农药。
摘要:马尔可夫链蒙特卡罗 (MCMC) 方法广泛应用于水文学和其他领域,用于贝叶斯框架中的后验推理。正确构造的 MCMC 采样器可以保证收敛到正确的极限分布,但收敛可能非常慢。虽然大多数研究的重点是改进用于在马尔可夫链中生成试验移动的提案分布,但这项工作的重点是有效地为基于群体的 MCMC 采样器找到初始群体,以加速收敛。四个案例研究,包括两个水文模型,被用来证明使用多级单链接隐式过滤随机全局优化来初始化种群,既降低了总体计算成本,又显着增加了在约束条件下找到正确极限分布的机会。固定的计算预算。
Infinite surprise - the iridescent personality of Kullback-Leibler divergence
Kullback-Leibler 散度不仅用于训练变分自动编码器或贝叶斯网络(而且不仅仅是一个难以发音的东西)。它是信息论中的一个基本概念,被广泛应用于各种应用中。最有趣的是,它并不总是与约束、正则化或压缩有关。恰恰相反,有时它与新颖性、发现和惊喜有关。
Gaussian Process Regression with tfprobability
继续我们的 TensorFlow Probability (TFP) 应用之旅,在贝叶斯神经网络、汉密尔顿蒙特卡罗和状态空间模型之后,我们在这里展示了高斯过程回归的一个例子。事实上,我们看到的是一个相当“正常”的 Keras 网络,以非常常见的方式定义和训练,TFP 的变分高斯过程层发挥了所有魔力。
Variational convnets with tfprobability
在贝叶斯神经网络中,层权重是分布,而不是张量。使用 tfprobability(TensorFlow Probability 的 R 包装器),我们可以构建具有概率层的常规 Keras 模型,从而“免费”获得不确定性估计。在这篇文章中,我们展示了如何定义、训练和从概率卷积神经网络中获得预测。
Dynamic linear models with tfprobability
之前的文章介绍了 tfprobability(TensorFlow Probability 的 R 接口),重点介绍了深度神经网络的增强功能(例如,引入贝叶斯不确定性估计)以及使用汉密尔顿蒙特卡罗拟合分层模型。这次,我们将展示如何使用动态线性模型 (DLM) 拟合时间序列,从而得到后验预测以及来自卡尔曼滤波器的平滑和滤波估计。
Adding uncertainty estimates to Keras models with tfprobability
截至目前,还没有主流方法可以从神经网络中获取不确定性估计。只能说,通常情况下,方法往往是贝叶斯主义的,涉及某种方式将先验置于模型权重之上。这也适用于本文中介绍的方法:我们展示了如何使用 tfprobability(TensorFlow Probability 的 R 接口)以优雅且概念上合理的方式将不确定性估计添加到 Keras 模型中。
A friendly introduction to Generative Adversarial Networks
到目前为止,我们一直在讨论判别模型,它将输入特征 x 映射到标签 y 并近似 P(y/x)——贝叶斯定律。生成模型则相反,它们试图根据标签预测输入特征。假设给定的标签是 y,我们看到某些特征 x 的可能性有多大。它们近似 P(x 和 y) 的联合概率。来源:Medium / CycleGAN生成对抗网络 (GAN)来源:O'ReillyGAN 的组成部分:1. 生成器——这是一个逆 CNN,当我们沿着 CNN 链前进并在输出处提取特征时,该网络不会压缩信息,而是将随机噪声作为输入特征并在其输出处生成图像。2. 鉴别器——鉴别器是一个 CNN,它查看来自训练集和生成器输出的图像,并将它们分类为真
以下是本月推荐阅读的精选:Athey, S. & G. W. Imbens,2019 年。经济学家应该了解的机器学习方法。Mimeo。Bhagwat, P. & E. Marchand,2019 年。关于适当的贝叶斯但不可接受的估计量。美国统计学家,在线。Canals, C. & A. Canals,2019 年。什么时候 n 足够大?寻找合适的样本量来估计比例。《统计计算与模拟杂志》,89,1887-1898。Cavaliere, G. & A. Rahbek,2019 年。时间序列模型中假设的引导检验入门:应用于双自回归模型。讨论文件 19-03,哥本哈根大学经济学系。Chudik, A.
Overview of Cluster Analysis and Dirichlet Process Mixture Models
在伦敦帝国理工学院机器学习硕士学位的 ISO 研究项目中,我专注于使用狄利克雷过程混合模型进行聚类分析的问题。DPMM 是一种“完全贝叶斯”无监督学习技术,与其他聚类分析方法不同,它不需要我们预先定义聚类总数 [...]
Odds on that God exists, says scientist
一位科学家计算出上帝存在的概率为 67%。斯蒂芬·昂温博士使用了一个 200 年前的公式来计算全能存在的可能性。贝叶斯理论通常用于计算事件发生的可能性,例如核电故障,通过平衡可能影响情况的各种因素。继续阅读……