Reviewing the Chinese Navy in 2025 – Part I: The surface fleet
随着 2025 年的结束,《海军新闻》对中国海军的显着发展进行了通常的年度回顾。第一部分将概述中国人民解放军海军(PLAN)水面舰队的相关补充,并简要介绍作战趋势。接下来的第二部分将是……《2025年中国海军回顾——第一部分:水面舰队》一文首先出现在《海军新闻》上。
Best Of Book Bits 2025: Part I
又一年(快)过去了,现在是时候再次回顾 2025 年的 Book Bits 专栏,并重点介绍因某种原因引起编辑关注的书籍了。像往常一样,在今年的年终回顾中,我们将重点介绍这一年中出现在这些页面上的十本书。我们将[...]
Kara Zor-El 在这首狂野预告片中以 Blondie 的 80 年代赞歌“Call Me”为背景,演绎出银河般的风格。
Coffee Break: The President Fixes Health Care While Unfixing the Air We Breathe, Among Other Things
第一部分:总统修复医疗保健问题。哦,快乐!很久以前,我告诉自己,当然,当我有资格享受医疗保险时,美国将会修复我们的医疗保健系统,从而工作锁定和其他各种问题都会消失。愚蠢的我。我有资格享受 Medicare [...]
Philippine Airlines debuts world’s first telenovela-style in-flight safety video
当菲律宾航空 (PAL) 于 2025 年 12 月 29 日首播其新的机上安全视频时,乘客们一如往常地期待……菲律宾航空推出世界上第一部电视剧风格的机上安全视频后,首先出现在 AeroTime 上。
1980年代から将来負担に配慮し、現在は保険料の引上げを打止め-2025年 年金改革の背景・意義・課題 (2) 年金制度のタテ問題
■概要 新年金制度改革法将于2025年6月12日实施,除公布时即施行的以外,自2026年4月起分阶段实施。在这个系列中,为了更加从容地对待体制改革,我们不仅会回顾改革的细节,还会回顾导致改革的背景,并思考改革的意义和遗留问题。在本系列的第二篇文章中,我们回顾了处理养老金制度垂直问题的背景和步骤。主要有以下几点。养老金的“纵向问题”是代际平衡和养老金金融可持续性问题。纵向问题的主要原因是少子高寿导致的人口变化,但女性和老年人就业的进步正在抑制少子高寿的影响。关于纵向问题,1980年的改革法案在考虑到未来负担的情况下努力抑制福利,但确保养老金财务的可持续性并不容易。 2004年的修订中,该制度进行
Coffee Break: More on Our Lousy Diet and Recovery of the Iconic American Chestnut
第一部分:超加工食品和成瘾。大农业公司和大食品公司的赚钱产品可能最终会出现问题。我们之前已经多次讨论过 UPF。在英语世界的大部分地区,它们占据了杂货店的中央过道。 《科学美国人》中的这篇文章增加了即将到来的信息浪潮 [...]
Coffee Break: Boxing Day Miscellany
第一部分:不,这不是另一个贝尔实验室。贝尔实验室作为研究高水平物理和工程的地方而闻名。它还支持阿诺·彭齐亚斯和罗伯特·威尔逊的研究,确定了大爆炸残余的背景宇宙微波辐射。但贝尔实验室工作了 [...]
Ограничения реалистичных ожиданий от международного миротворчества
自 20 世纪 60 年代初以来,在联合国授权下开展的国际维和行动一直被认为是管理国际冲突的主要工具之一。维持和平被视为一个多层面、多边和多层次的机制,随着其发展,现在不仅必须为冲突地区的平民提供基本的人身保护,而且还必须提供建设和平和国家建设的要素,包括和解和改革措施。然而,建设和平常常被地缘政治争端所扭曲,从而将其支持和解的现代目标推向更传统的形式。这使我们能够形成本文第一部分提出的所谓对维持和平行动的现实期望,这种期望与正式宣布的行动目标相反,往往不会超越消极的和平形式。第二节更详细地探讨了现实的维和期望的概念,指出维和背后的地缘政治扩大了承诺与实际和平结果之间的差距,这表明维和更多的是
Dhurandhar 2 locked for Eid 2026: Release date, languages, story continuation and OTT details
Dhurandhar 2 将于 2026 年 3 月 19 日上映。这部电影将提供印地语、泰卢固语、泰米尔语、卡纳达语和马拉雅拉姆语版本。这标志着该系列游戏将在全印度发行。续集是继第一部成功之后推出的。 Dhurandhar 2 的目标是在开斋节期间吸引广泛的观众。故事以新的曲折延续间谍剧。
在我们的两部分系列的第一部分中,您将学习如何针对生成式 AI 工作负载改进现有的 DevOps 架构并实施 GenAIOps 实践。我们将展示不同生成式人工智能采用级别的实际实施策略,重点关注消费基础模型。
本实践辅助材料是 GAO 2024 年政府审计标准修订版 (GAO-24-106786)(也称为黄皮书,GAO 于 2024 年 2 月 1 日发布)的配套文件。自此,审计组织在满足 2024 年黄皮书第 5 章“质量管理、参与质量审核和同行评审”中概述的新质量管理要求方面不断取得进展。本黄皮书实践辅助材料的目的是根据审核组织经常提交的问题提供额外的指导。本黄皮书实践辅助材料旨在帮助审核组织在根据黄皮书进行业务的质量管理体系的设计、实施和操作时了解并满足新的质量管理要求。它包含三个部分: 第一部分:质量管理风险评估流程 第二部分:质量管理监控和补救流程 第三部分:参与质量审核 根据黄皮书第 2
複素数について(その5)-複素解析(複素関数の微分・積分)-
■摘要 在本期《研究者之眼》系列中,我们将再次报道“虚数”以及由虚数和实数组成的“复数”,它们是什么、它们具有什么性质以及它们在社会中的用途。这次,我们将分三部分介绍复数分析,解释虚数和复数在数学世界中的应用。在第一节中,我们解释了复函数的定义,并解释了它们与真实函数的异同。第二次,我们将解释复杂函数的微分和积分及其性质。 ■目录 / 简介 / 复函数的微分 / 柯西-黎曼方程 / 复函数微分的性质 / 复函数的积分 / 复函数积分的性质 / 柯西积分定理 / 格林定理 / 不定积分 / 柯西积分公式 / 古萨特定理 / 莫雷拉定理 / 洛朗展开 / 留数定理 / 最后,在本期中在研究员之眼系
What Bayard Rustin Would Do? Part 2
贝亚德·拉斯汀会做什么?第 2 部分 0vpthomas2025 年 12 月 9 日我们的客座作者是埃里克·切诺维斯 (Eric Chenoweth),他是东欧民主研究所所长,也是面向教师、学生和公民活动家的在线比较学习指南 Democracy Web 的主要作者。他在 20 世纪 70 年代末和 80 年代与贝亚德·鲁斯汀 (Bayard Rustin) 一起担任过多种职务。埃里克参观了田纳西州孟菲斯国家民权博物馆的新展览“贝亚德·鲁斯汀的一生:向权力说出真相”,该展览揭示了鲁斯汀在民权运动中的核心工作以及他对国际和平与人权运动的贡献。该展览将持续到 2025 年 12 月 31 日,并将