在本文中,我们重点研究形式为 f ◦ G = f ( G ( X 1 , Y 1 ), . . . , G ( X n , Y n )) 的函数的量子通信复杂度,其中 f : { 0 , 1 } n →{ 0 , 1 } 是对称函数,G : { 0 , 1 } j × { 0 , 1 } k →{ 0 , 1 } 是任意函数,并且给定 Alice (或 Bob) ( X i ) i ∈ [ n ] (或 ( Y i ) i ∈ [ n ])。最近,Chakraborty 等人。 [STACS 2022] 证明,当允许双方使用共享纠缠时,f ◦ G 的量子通信复杂度为 O ( Q ( f )QCC E ( G )),其中 Q ( f ) 是 f 的查询复杂度,QCC E ( G ) 是 G 的精确通信复杂度。在本文中,我们首先证明相同的陈述在没有共享纠缠和共享随机性的情况下成立,这推广了他们的结果。基于改进的结果,我们接下来在两个模型中证明任何对称函数 f (其中 AND 2 : { 0 , 1 } × { 0 , 1 } →{ 0 , 1 } 表示 2 位 AND 函数) 的 f ◦ AND 2 的严格上界:具有共享纠缠和不具有共享纠缠。这与 Razborov [Izv. Math. 67(1) 145, 2003]当允许共享纠缠时,我们改进了Razborov的界限,当不允许共享纠缠时。
2 | ⟨ ψ | [ A, B ] | ψ ⟩| 取决于初始状态,因此并不固定,以至于当 | ψ ⟩ 的某些选择时它会消失,这些选择不必是可观测量 A 和 B 的同时特征函数。此外,基于偏差的不确定性关系通常不能捕捉可观测量互补方面 [12] 的物理内容和信息内容的传播 [13]。用可观测量的熵来表示不确定性最早是由 Everett [17] 提出的。参考文献 [14] 对此进行了肯定的回答,即位置和动量可观测量的熵之和满足不等式。对于具有连续谱的可观测量,这种熵不确定关系分别在参考文献 [15, 16] 中得到证明和改进。当系统状态为高斯波包时,不等式的下界成立。熵不确定性关系在有限维希尔伯特空间中的可观测量的扩展最早在文献[11]中提出,后来在文献[18]中得到改进。我们希望
量子非局域性是多体量子系统的一个典型现象,它没有任何经典对应物。纠缠是最具代表性的非局域量子关联之一,它不能仅通过局域操作和经典通信(LOCC)来实现 1、2。众所周知,量子纠缠的非局域性质可用作许多量子信息处理任务的资源 3。量子非局域现象也可以出现在多体量子态鉴别中,这是量子通信中有效信息传输的重要过程。一般来说,正交量子态可以肯定地加以区分,而非正交量子态则无法做到这种区分。沿着这个思路,需要状态鉴别策略来至少以某个非零概率 4 – 7 鉴别非正交量子态。然而,当可用的测量仅限于 LOCC 测量 8 时,多体量子系统的某些正交态无法肯定地加以区分。由于在没有可能的测量限制时正交态总是能够被确定地区分,LOCC 测量的这种有限的鉴别能力揭示了量子态鉴别中固有的非局部现象。量子态鉴别的非局部现象也可能出现在鉴别多体量子系统的非正交态时;众所周知,某些非正交态不能仅使用 LOCC 9 – 11 进行最佳鉴别。因此,多体量子态 12 – 19 的最佳局部鉴别受到了广泛关注。然而,实现最佳局部鉴别仍然是一项具有挑战性的任务,因为很难对 LOCC 进行很好的数学表征。克服这一困难的一个有效方法是研究最佳局部鉴别的最大成功概率的可能上限。为了更好地理解最佳局部鉴别,建立实现这种上限的良好条件也很重要。最近,在二体量子态的局部最小误差鉴别中建立了最大成功概率的上限。此外,还给出了该上界饱和的必要充分条件20。在这里,我们考虑任意维数的多部分量子态之间的无歧义鉴别(UD)21 – 24,并为最佳局部鉴别的最大成功概率提供上限。此外,我们提供了实现该上界的必要充分条件。我们还建立了该上界饱和的必要充分条件。最后,我们使用多维多部分量子系统中的示例来说明我们的结果。本文组织如下。在“结果”部分,我们首先回顾多体量子系统中可分离算子和可分离测量的定义和一些性质。我们进一步回顾了UD的定义并提供了一些最优UD的有用性质(命题1)。作为本文的主要结果,我们给出了利用一类作用于多体希尔伯特空间的Hermitian算子实现最优局部鉴别的最大成功概率的上界(定理1)。此外,我们给出了Hermitian算子实现该上界的必要充分条件(定理2和推论1)。我们还建立了该上界饱和的必要充分条件(推论2)。我们通过多维多体量子系统中的例子说明了我们的结果(例子1和2)。在“方法”部分,我们提供了定理1的详细证明。在“讨论”部分,我们总结了我们的结果并讨论了与我们的成果相关的可能的未来工作。
我们对学习算法感兴趣,该算法可在单个卖家面对单个策略性买家的重复情境标价拍卖中优化收益。在我们的设定中,买家最大化其预期累积折现盈余,并且假设他对商品的估价是 ad 维情境(特征)向量的固定函数。我们引入了一种新颖的确定性学习算法,该算法基于二分法的思想,策略遗憾上界为 O(log 2 T)。与之前的研究不同,我们的算法不需要对情境信息的分布做出任何假设,并且遗憾保证适用于任何特征向量的实现(对抗性上界)。为了构建我们的算法,我们非平凡地采用了积分几何技术来对抗买家策略性,并改进了惩罚技巧以在情境拍卖中发挥作用。
集合和函数的语言 - 可数集和不可数集。实数 - 最小上界和最大下界。序列 - 序列的极限点、收敛序列;有界和单调序列、序列的上极限和下极限。柯西序列和 R 的完备性。级数 - 级数的收敛和发散、绝对收敛和条件收敛。黎曼重排定理。级数收敛的各种测试。(积分测试将推迟到分析 II 中引入黎曼积分之后。)无穷级数与实数的十进制展开、三进制、二进制展开之间的联系。柯西积、无限积。
pebax®2533是一种热塑性弹性体,含有20 wt%的聚酰胺(PA)脂肪族硬块,可提供我的强度和80 wt%的无定形多醚(PE)软块,可促进CO 2分子的运输。pebax®2533被认为是为CO 2分离过程制造膜的有前途的材料,显示了ACCEP-表CO 2渗透性,具有理想的CO 2 /N 2选择性(Li等,2021a; Kim等,2020)。然而,聚膜的特性受到气体渗透性和选择性之间的典型权衡限制,由Robeson上界表示(Dal-Cin等,2008)。混合基质膜(MMMS)的织物是克服在气体分离过程中应用的聚合膜中取舍关系的有效方法(Kamble等,2021; Singh等,2021; Shah Buddin和Ahmad,2021年)。mmms可以整合聚合物矩阵的加工性和
GT )量子查询其中 T 是决策树的深度,G 是猜测算法的最大错误数。在本文中,我们给出了一个简单的证明,并将这个结果推广到具有非二进制输入和输出字母表的函数 f :[ ℓ ] n → [ m ]。我们进行这种推广的主要工具是最近为非二进制函数开发的非二进制跨度程序和对偶对手界限。作为我们主要结果的应用,我们提出了几个量子查询上界,其中一些是新的。特别是,我们证明了有向图 G 的顶点的拓扑排序可以用邻接矩阵模型中的 O(n 3 / 2)量子查询完成。此外,我们证明了邻接表模型中最大二分匹配的量子查询复杂度上限为 O(n 3 / 4 √ m + n)。
在本文中,我们提供了一个框架,用于将多种量子模拟方法(例如 Trotter-Suzuki 公式和 QDrift)组合成单个复合通道,该通道基于较旧的合并思想来减少门数。我们方法背后的核心思想是使用分区方案,将汉密尔顿项分配给模拟中通道的 Trotter 或 QDrift 部分。这使我们能够使用 QDrift 模拟小但众多的项,同时使用高阶 Trotter-Suzuki 公式模拟较大的项。我们证明了复合通道和理想模拟通道之间菱形距离的严格界限,并展示了在什么条件下,实现复合通道的成本由组成它的方法渐近上界,无论是概率分区还是确定性分区。最后,我们讨论了确定分区方案的策略以及在同一框架内合并不同模拟方法的方法。
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。