该研究的目的是根据机器学习算法和气候变化方案来估计未来的地下水潜在区域。14个参数(即曲率,排水密度,坡度,粗糙度,降雨,温度,相对湿度,谱系密度,土地使用和土地覆盖,一般土壤类型,地质学,地质学,地形学位置(TPI),地形湿度(TWI)用于开发机器学习量学算术。使用三种机器学习算法(即人工神经网络(ANN),逻辑模型树(LMT)和逻辑回归(LR))用于识别地下水潜在区域。根据ROC曲线选择了最佳拟合模型。代表性浓度途径(RCP)为2.5、4.5、6.0和8.5降水的气候场景,用于对未来的气候变化进行建模。最后,基于最佳的机器学习模型和未来的RCP模型,在2025、2030、2035和2040年确定了未来的地下水潜力区。根据发现,ANN比其他两个模型显示出更好的准确性(AUC:0.875)。ANN模型预测,土地的23.10%处于非常高的地下水潜力区域,而33.50%的地下水潜在区域则为33.50%。该研究在不同的气候变化方案(RCP2.6,RCP4.5,RCP6和RCP8.5)下预测降水值的2025、2030、2035和2040使用ANN模型,并使用ANN模型显示每个场景的空间分布图。最后,为将来的地下水潜在区域生成了16个场景。政府官员可以利用该研究的结果为国家一级的水管理和规划提供基于证据的选择。
抽象的不加选择的电池浪费是危害人类健康和环境的巨大问题。这项研究旨在分析Ogun State的电池回收利用污染的健康影响,该公司拥有各种各样的电池回收行业。在该研究地点,在湿和干燥的季节中研究了40种水样品,以评估电池回收废物对地下水的影响。除TSS外,地下水的生理化学参数随季节而变化,并且在允许的极限范围内。The electrical conductivity (EC), turbidity, Phosphorus, Biochemical oxygen demand (BOD), Dissolve oxygen (DO), and Total suspended solid (TSS) within the study year ranges from 51.00 - 178.22 S/cm, 2.26 - 2.36 NTU, 0.089 - 0.66 mg/L, 13.3 - 14.2 mg/L, 5.06 - 5.67 mg/l和78.0-88.4 mg/l。Furthermore, the average concentrations (in ppm) obtained for Mn, Cu, Zn, Ni, Cd, As, Fe, Pb, Cr, and Co are 0.407 – 0.42, 0.355 – 0.369, 0.179 – 0.225, 0.061 – 0.265, 0.366 – 0.464, 0.488 – 0.631, 0.544 – 0.601, 0.481 - 0.576,0.284 - 0.334,0.3 - 0.382。重金属污染指数(HPI)值在3.880到4.528之间表示重金属污染的水平最小,但是水质指数(WQI)得分范围为124.68至131.46,表明潜在的环境危害。关键字:电池废物,重金属,物理化学参数和电池回收。简介
含水层既可以限制和不受限制。无限制的含水层通常是浅的。在不受限制的含水层中,地下水位是含水层的顶部,仅受大气压力(就像地表水一样)。限制的含水层通常要深得多,并受到从上方和下方的密集岩石的限制,从而将地下水流入或流出含水层。这可能导致含水层超出大气压力。
大约20年前,在与以前的3M处置设施相关的东部双子城的地表水和地下水中发现了每种和多氟烷基物质(PFA)。今天,明尼苏达州卫生部(MDH)估计,140,000多个明尼苏达州人的饮用水供应受到PFA的污染,覆盖150平方英里。 明尼苏达州污染控制机构(MPCA)随后确定了其他PFA来源,包括垃圾填埋场,废水处理设施和数十个行业。 法规继续降低环境中的允许水平。 现有的PFA的清洁技术仅限于在集中位置提取地下水后的地上或点源处理。 例如,伍德伯里市建立了一个临时设施,以解决PFAS影响的地下水,耗资超过1100万美元。 其他补救技术,例如饮用水处理厂,通过机械操作将PFA浓缩,或使用吸附剂或树脂将PFA与替代培养基结合。 由于密集的基础设施成本,实施非常昂贵,再加上仍然需要正确管理的高能源投入和残留废物产品。 对现场规模生物修复技术的关注很少,以破坏PFA,这将减轻对接触点的治疗技术的需求。 海湾韦斯特(Bay West)具有独特的资格来应对这一挑战。今天,明尼苏达州卫生部(MDH)估计,140,000多个明尼苏达州人的饮用水供应受到PFA的污染,覆盖150平方英里。明尼苏达州污染控制机构(MPCA)随后确定了其他PFA来源,包括垃圾填埋场,废水处理设施和数十个行业。法规继续降低环境中的允许水平。现有的PFA的清洁技术仅限于在集中位置提取地下水后的地上或点源处理。例如,伍德伯里市建立了一个临时设施,以解决PFAS影响的地下水,耗资超过1100万美元。其他补救技术,例如饮用水处理厂,通过机械操作将PFA浓缩,或使用吸附剂或树脂将PFA与替代培养基结合。由于密集的基础设施成本,实施非常昂贵,再加上仍然需要正确管理的高能源投入和残留废物产品。对现场规模生物修复技术的关注很少,以破坏PFA,这将减轻对接触点的治疗技术的需求。海湾韦斯特(Bay West)具有独特的资格来应对这一挑战。
• TA-V 地下水受到硝酸盐和三氯乙烯 (TCE) 污染,浓度高于美国环境保护署饮用水最高污染物水平 (MCL)。 • 硝酸盐和 TCE 源自 20 世纪 60 年代至 1992 年期间 TA-V 排放的工业和化粪池废水。硝酸盐也可能自然产生。 • 除 TAV-MW17 外,监测井每半年或每年采样一次,以检测硝酸盐和 TCE(关注成分),每年采样一次,以检测废物特性参数。
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
地下水在支持非洲的经济活动中起着至关重要的作用,特别是在受气候变化引起的水稀缺性影响的地区。本研究研究了地下水对这些地区冲突动态的经济影响。我们采用了一个涵盖1997年至2021年期间的全面数据集,其中包括有关冲突事件和地下水可用性的信息。通过利用横截面和时间分析,我们研究了地下水深度,气候变化和冲突发生之间的关系。我们的发现表明,浅水份额较高的地区(即更容易接近的地下水)更容易出现暴力,并且在2010年代观察到了增强的影响。此外,浅水对低强度冲突事件以及与水和性暴力有关的水具有更大的影响。我们还强调了当地参与者的作用和在水通道中作为重要冲突驱动因素的作用。这些发现强调了制定公平水管理策略以减轻冲突和促进非洲可持续发展的必要性。
附录:结果,地下水在转移层保护区生物多样性(包括野生动植物)和人类依靠TFCA生态系统的关键作用,以足够的数量和质量来获得可靠的水流。依赖地下水的生态系统,例如Linyanti湿地,吸引游客进入Kaza TFCA并支持当地经济,而大多数农村家庭则依靠地下水来供应他们的日常水。竞争需求和质量恶化的地表水负担增加,这意味着地下水现在是确保水安全和对Kaza TFCA当地社区的气候弹性至关重要的资源。此外,地面与地表水系统之间存在牢固的联系,它们的相互依赖性应促进一种更加集成的治理方法(参见McCarthy等,2012)。地下水和人类与野生动植物之间的冲突相互作用在TFCA中是不可避免的。,即使人们和野生动植物的一般共存,也可能导致冲突,这成为需要管理的挑战。人类野生动物冲突(HWC)(Gross等,2021)。当水资源稀缺时,它会迫使人类和野生动植物争夺可用的水。在赞比亚和安哥拉,夸兰多河沿岸的当地社区在进入水中时,尤其是在8月至11月之间的浅水区时,浅水。还报道了野生动植物的作物破坏,包括河马和大象。由于气候变化,长时间的干旱时期和较差的土地用途规划,HWC上的水上已经加强了水。集成计划为改善土地用途的协调提供了机会。例如,聚类类似的活动,例如农业和人类定居点,可能会为水基础设施提供更有效的计划,从而减少野生动植物走廊内的冲突。在延长的干燥期间,地表水资源受到特别影响,促使人们将重点转移向地下水,以减轻人类野生动物冲突的挑战(HWC)。这涉及开发远离野生动植物走廊的地下水来源,以及建立野生动植物的“人造”水点(AWP)。开发AWP的实践涉及例如,将地下水泵送到模拟天然水存在模式,例如在特定地点的体积和时间。为野生动植物保护区开发用于野生动植物供水的AWP,因为它们倾向于引起野生动植物种群增加和对自然迁徙模式的干扰(Perkins,2020)。但是,当AWP的设计以模仿自然系统以确保野生动植物的适当运动的方式时,可以减轻这些负面后果。在用于国内供水目的开发地下水资源的地方,供水系统的运行应包括有效的HWC威慑。一个例子是赞比亚的Sioma Ngwezi国家公园沿线的Kapau社区,他们从地下水的发展中受益,以确保从野生动植物远离野生动植物(肯特,2020年)。在支持生物多样性和淡水生态系统中的地下水通道不受控制,地下水抽水过多可能会导致含水层的降解,因为抽象率超过了补给率(Foster&Chilton,2003年)。在这种情况下,很难维持地下水环境流,这使得能够在含水层中剩余的地下水和地下水之间达到平衡,以维持地下水依赖的生态系统(GDES)(GDES)(Ebrahim&Villholth,2016年)。在地表水资源中维持生态流量是逐步接受和理解的,但是,在Kaza TFCA国家中,实施的支持政策框架通常是不发达的,而对于地下水来说,实施的政策框架较少。此外,即使地下水对流量的贡献尚未得到充分量化,它仍然是维持生态系统功能和生物多样性的水的重要来源(De Graaf等,2019; Yarnell等,2022)。在确定地下水生态流程时可以进行进展之前,关键的第一步是增加有关Kaza TFCA地下水资源数量和质量的知识。目前,对含水层的程度和能力几乎没有知识(例如Transbaindary Nata Karoo含水层) - 他们持有多少水,可持续使用实际上意味着什么((Villholth等,2022)。拥有此类信息可实现适当的政策响应和适当的管理措施。
地下水是一种独特的资源,约占地球2所有液体淡水的99%,并有可能为社会提供社会,经济和环境利益和机会。它在全球所有饮用水中占50%,约40%的水用于灌溉农业,而工业3所需的水的30%。由于含水层的较大储水和自然处理过程,地下水可以缓冲降雨模式的季节性变化,而气候变化模型预测。因此,当作为综合水资源管理(IWRM)4计划的一部分进行有效管理时,它可以支持气候变化的适应,以优化其潜力并确保其可持续性。地下水可以为可持续发展目标(SDG)做出贡献:它可以为所有人提供清洁的水和卫生设施(SDG 6);与地表水相比,它提供了可靠的替代资源,从而有助于气候变化适应(SDG13)。它还通过维持河流的基础并防止土地沉降和海水侵入来维持陆地生态系统(SDG 15)(SDG 15)。
摘要 - 由于复杂且多样化的水文地质特性,边界条件和人类活动以及这些元素之间的非线性相互作用,农业区域的水深度预测很困难。因此,作为代替昂贵的模型的替代品,本研究建立了一个由长期短期存储网络(LSTM)的创新系列时间框架以及完全连接的层构成的模型。第一个LSTM层采用了辍学方法。使用14年(2000- 2013年)在中国Hetao灌溉区的北部沙漠的五个辅助领域的数据(2000- 2013年)的数据测试和评估了建议的模型。建议的模型可以根据蒸发,水转移,温度,时间和降水的转移来预测地下水位深度。实验将14年的数据划分为培训和验证数据集。传统的喂养神经网络(FFNN)在相对较低(0.004–0.495)R2分数中获得了建议的框架在深度预测的深度(0.789–0.952)中获得了较高的R2评分,这表明建议的框架可以弥补和获得过去的数据,并获得了过去的数据。进一步探索了辍学方法的有效性,以及建议模型的设计。实验的结果表明,使用辍学策略可以大大减少过度拟合。此外,提出的模型的R2分数与双LSTM框架的R2分数的比较范围为0.170-0.864,它描述了建议的体系结构的适当性,这有助于在系列时间的数据中进行高度学习能力。因此,建议的模型可以用于预测地下水位的深度,以替代水文地质数据,尤其是在水文学数据稀缺的地方。