摘要 - 由于复杂且多样化的水文地质特性,边界条件和人类活动以及这些元素之间的非线性相互作用,农业区域的水深度预测很困难。因此,作为代替昂贵的模型的替代品,本研究建立了一个由长期短期存储网络(LSTM)的创新系列时间框架以及完全连接的层构成的模型。第一个LSTM层采用了辍学方法。使用14年(2000- 2013年)在中国Hetao灌溉区的北部沙漠的五个辅助领域的数据(2000- 2013年)的数据测试和评估了建议的模型。建议的模型可以根据蒸发,水转移,温度,时间和降水的转移来预测地下水位深度。实验将14年的数据划分为培训和验证数据集。传统的喂养神经网络(FFNN)在相对较低(0.004–0.495)R2分数中获得了建议的框架在深度预测的深度(0.789–0.952)中获得了较高的R2评分,这表明建议的框架可以弥补和获得过去的数据,并获得了过去的数据。进一步探索了辍学方法的有效性,以及建议模型的设计。实验的结果表明,使用辍学策略可以大大减少过度拟合。此外,提出的模型的R2分数与双LSTM框架的R2分数的比较范围为0.170-0.864,它描述了建议的体系结构的适当性,这有助于在系列时间的数据中进行高度学习能力。因此,建议的模型可以用于预测地下水位的深度,以替代水文地质数据,尤其是在水文学数据稀缺的地方。
主要关键词