Loading...
机构名称:
¥ 1.0

摘要。非可再生能源资源的利用需要电力部门采用替代能源,包括光伏和风力发电系统。这项学术研究采用了两种机器学习方法,尤其是该研究利用了随机森林和支持向量机算法。进行分析。预测伊拉克迪亚拉省风的速度在随后的时间间隔内。这仅通过使用历史每月时间序列数据作为输入预测因素来实现。采用的三个性能指标涵盖了保证系数(R2),残酷的正方形错误(RMSE)和残酷的彻底失误(MAE)。调查结果表明,在时间序列数据中使用12个月的滞后(已测试的最大滞后持续时间)作为输入预测指标,导致最准确的预测在性能方面。但是,所使用的两种算法的预测性能几乎相似(RF的RMSE,MAE和R2为0.237、0.180和0.836,而SVM的预测性能为0.223、0.171和0.856)。鉴于其当前的电力行业困境,预期风速的能力构成了对伊拉克的最高优势,这有可能使利益相关者预测过度供应或供应供应并实施先发制人的措施。

使用机器学习的每月风速预测

使用机器学习的每月风速预测PDF文件第1页

使用机器学习的每月风速预测PDF文件第2页

使用机器学习的每月风速预测PDF文件第3页

使用机器学习的每月风速预测PDF文件第4页

使用机器学习的每月风速预测PDF文件第5页

相关文件推荐