辨别活细胞、组织和材料的纳米级细节对许多现代研究工作至关重要。随着一组方法的出现,开辟了一条通往这一圣杯的道路,这些方法被统称为超分辨率显微镜 [ 1 , 2 ],能够突破衍射极限 [ 3 – 5 ]:传统上被认为是无法逾越的障碍。许多此类技术还可以揭示三维 (3D) 结构细节:相关示例包括受激发射损耗显微镜 [ 6 ]、PSF 工程 [ 8 – 12 ]、光激活定位显微镜 [ 7 ] 和多平面检测 [ 13 – 15 ],这只是其中的一部分。所有这些技术都依赖于非常精确的点源定位;它们的不同之处在于如何激发点物体以及如何收集相应发射的光子。对于 3D 成像,发射器经过荧光标记,确定其轴向位置是必不可少的一步。迄今为止,该问题已得到彻底研究,并已取得一些令人印象深刻的成果 [16]。但直到最近才开始考虑通过任何此类工程方法实现的基本深度精度 [17-19]。其背后的原理是系统地利用量子 Fisher 信息 (QFI) [20] 和相关量子 Cram´er-Rao 边界 (QCRB) 来获得与测量无关的极限 [21,22]。这与 Tsang 等人量化横向两点分辨率 [23-27] 的工作非常相似,后者已消除了瑞利诅咒 [28-31]。在最近的一项研究 [32] 中,已经确定了使用高斯光束的轴向定位的极限精度。只要将检测平面放置在一个最佳位置,只需一次强度扫描即可达到此极限。在本文中,我们概括了这些结果,并推导出拉盖尔-高斯 (LG) 光束轴向定位的量子极限,该光束携带量化的轨道角动量 [33]。在这里,光束腰充当点源在模式转换等之后发射的光的实现。另一个相关情况是在表面拓扑测量等中光束从表面的反射。通过线性叠加不同的 LG 模式,可以实现具有幅度、相位和强度模式的光束,这些光束在自由空间传播下简单旋转,保持横向形状。这些旋转结构是各种传感技术的核心 [34-37]。我们证明,强度扫描中只能获得全部(量子)信息的一小部分,其中只有一小部分可以归因于旋转。这清楚地证实了模式
其中α是定量时空的每个模型的常数特异性[14 - 17]。此外,全息原理[18-20]和随之而来的协变熵结合[21],这意味着这些距离波动在给定的时空体积中相关。此外,Verlinde和Zurek [22,23]和'T Hooft [24,25]的工作表明,这些相关性可能会延伸到横向上的宏观距离(或等效地,沿着因果钻石的边界[26])。这些理论方法评估了量子波动及其在Hori-Zons上的相关性,并通过将因果钻石的边界确定为视野(特别是Rindler Hori-Zons),可以描述量子时空波动的横向相关性。,Verlinde和Zurek假设热力学特性所规定的能量波动会导致公制在台上通过牛顿电势而与横向相关性的视频波动[22]。'thooft提出,如果地平线的量子波动,黑洞可以服从单位性(例如霍金辐射)是隔离纠缠的[27]。这些理论为波动的垂直两点相关函数提供了具体而几乎相同的预测,作为球形谐波的扩展[22,24,28]。以这种方式得出的相关性分解为球形谐波y m y y m在低L模式中的大部分功能,这激发了以下预测,如上所述,横向相关性在宏观角度分离上延伸到宏观的角度分离。此外,已经提出,CMB中温度波动的角功率谱是这种基本分解在通货膨胀范围上量子波动的球形谐波中的基本分解的表现[29]。重要的是,宏观横向相关性意味着波动在激光束或望远镜孔径的典型直径上是连贯的。如果是这种情况,则通过评估远处对象图像的模糊或退化[16,30]的模糊或降解来设置在量子时空波动上[16,30]。鉴于距离量表的量子时空波动与宏观距离上的相关性和相关性,激光干涉仪对它们具有独特的敏感。因此,对这些波动的最严格约束是由现有的干涉量实验设置的。Ligo,处女座和Kagra协作使用的引力波(GW)干涉仪的设计[31]降低了其对量子时空幻影的潜在敏感性。这是因为它们在手臂中使用Fabry – p´errot腔(或折叠臂,如Geo 600中),这意味着单个光子多次横穿相同的距离。此外,这些仪器的输出的频率低于光线交叉频率。这会导致从单个光线中积累的波动中随机检测到的信号与随后的交叉点的信号平均,从而消除了效果[17]。一个旨在检测量子时空波动的干涉测量实验是Fermilab螺旋表,它由两个相同的共同阶层和重生40 m
复分析(每周 3 节课):复平面的拓扑结构、单连通域和多连通域。同伦版本。扩展复平面的球面表示、解析函数、谐波函数、次谐波函数及其应用、次谐波函数的 Littlewood 条件、复积分、柯西定理和积分公式、缠绕数、柯西估计、莫雷拉定理、刘维尔定理、代数基本定理。最大模原理、施瓦茨引理、泰勒级数、洛朗级数、复函数的零点和极点、亚纯函数。赫尔维茨定理、奇点分类、留数定理、参数原理、鲁什定理和高斯-卢卡斯定理、轮廓积分及其在非正常积分中的应用、实积分的计算、涉及正弦和余弦的非正常积分、涉及正弦和余弦的定积分、通过分支切割积分、保形映射、莫比乌斯变换、施瓦茨-克里斯托费尔变换。韦尔斯特拉斯定理、蒙特尔定理及其在建立维塔利定理中的应用。哈纳克不等式及其在建立哈纳克原理中的应用。数值分析(每周 1 节课):实矩阵的特征值和特征向量:极值特征值和相关特征向量的幂法、对称矩阵的雅可比和 Householders 方法。样条插值:三次样条。函数逼近:最小二乘多项式逼近、正交多项式逼近、切比雪夫多项式、兰佐斯节约法。数值积分:闭式牛顿-柯特公式、高斯求积法。常微分方程(ODE)初值问题的数值解:多步预估-校正法、Adams-Bashforth 方法、Adams-Moulton 方法、Milne 方法、收敛性和稳定性。常微分方程的两点边界值问题:有限差分和 Shooting 方法。参考文献:复分析:1.Churchill, RV 和 Brown, JW,《复变量及其应用》第 5 版,McGrawHill。 1990. 2. Gamelin, TW, “复分析”, Springer-Verlag 2001. 3. Greene R. 和 Krantz, SG, “单复变量函数理论”, 第 3 版, GSM, 第 40 卷, 美国数学学会。2006. 4. Lang, S., “复分析”, Springer –Verlag, 2003. 5. Narasimhan, R. 和 Nivergelt, Y., “单变量复分析”, Birkhauser, 波士顿, 2001. 6.Ahlfors, LV, “复分析”, 第 3 版, McGrawHill, 纽约,1979. 7.Conway, JB “单复变量函数”, Springer –Verlag, 1978. 数值分析:
“范德莱”。荷兰或英国生产的纸张,18 世纪下半叶中叶。[11,第 11 页] 125,第2749号],即上面可能写着一封 19 世纪初的信。这封信的法文版中没有亚历山大一世的亲笔签名,很自然地可以解释为,法文原件被发送到其预定目的地,但不一定是巴黎,而是收件人目前所在的地方。现在是时候谈谈信的内容了,两个版本的信纸边缘都被一个哀悼框包围着,这与当时为死者设立的死亡通知和哀悼形式非常一致。这封信涉及大公夫人伊丽莎白·亚历山德罗夫娜 (Elizaveta Alexandrovna) 于 1808 年 4 月 30 日去世,她的母亲是皇后伊丽莎白·阿列克谢耶夫娜 (Elizaveta Alekseevna),出生于 1806 年 11 月 3 日。在《Camerfour 礼仪杂志》中有关 1808 年 4 月 30 日的条目中,有这样一段记载:说道:“早上八点陛下无限悲痛,皇室万分遗憾,太子殿下在她出生的第二年就去世了”[5,p.11]。330]。那里还报道说,下午两点,当皇家告解神父和其他宫廷神职人员已经主持了葬礼时,向外交部长伯爵发出了最高命令。N.P.Rumyantsev“关于礼仪部门准备埋葬殿下遗体的命令”[5,第 17 页]332]。两岁女大公去世的通知,当然是专门针对政府官场发表的一份特别宣言:“去年四月三十日,以全能上帝的力量,我们的亲爱的女儿伊丽莎白女大公在她两岁时就去世了。通过为我们宣布这一悲伤事件,我们确信我们所有忠实的臣民将与我们分享我们的悲伤”[9]。以下为1808年5月21日法国特使维琴察公爵阿尔芒·德·科兰古向拿破仑的报告,5月12日正式宣布其逝世消息,同时科兰古代表法国大使馆,向N.P.表示深切哀悼。Rumyantsev [6,第 14 页]141],因为无法与皇帝交谈。第二天,在给拿破仑的报告中,大使指出:“皇帝对 12 日去世的女儿深感悲痛”[6,第 12 页]。148]。他们周围的人利用这一点,使配偶之间的关系恢复......” [6,第 14 页]151]。154] 1 。在同一份电报中,谈到其他主题,特使写道:“大公夫人的去世引起了人们对皇后的极大同情:她处于彻底的绝望之中,皇帝本人也感到深深的悲伤。5 月 22 日,科兰古在致外交部长卡多尔公爵让-巴蒂斯特·尚帕尼 (Jean-Baptiste Champagny) 的一份报告中报告称,皇帝“已经好几天没有外出或处理事务了”[6,第 14 页]。5月29日,使者报告:“自从太子妃死后,皇帝很少出来,也不邀请任何人到他的地方;”
“范德莱”。荷兰或英国生产的纸张,18 世纪下半叶中叶。[11,第 11 页] 125,第2749号],即上面可能写着一封 19 世纪初的信。这封信的法文版中没有亚历山大一世的亲笔签名,很自然地可以解释为,法文原件被发送到其预定目的地,但不一定是巴黎,而是收件人目前所在的地方。现在是时候谈谈信的内容了,两个版本的信纸边缘都被一个哀悼框包围着,这与当时为死者设立的死亡通知和哀悼形式非常一致。这封信涉及大公夫人伊丽莎白·亚历山德罗夫娜 (Elizaveta Alexandrovna) 于 1808 年 4 月 30 日去世,她的母亲是皇后伊丽莎白·阿列克谢耶夫娜 (Elizaveta Alekseevna),出生于 1806 年 11 月 3 日。在《Camerfour 礼仪杂志》中有关 1808 年 4 月 30 日的条目中,有这样一段记载:说道:“早上八点陛下无限悲痛,皇室万分遗憾,太子殿下在她出生的第二年就去世了”[5,p.11]。330]。那里还报道说,下午两点,当皇家告解神父和其他宫廷神职人员已经主持了葬礼时,向外交部长伯爵发出了最高命令。N.P.Rumyantsev“关于礼仪部门准备埋葬殿下遗体的命令”[5,第 17 页]332]。两岁女大公去世的通知,当然是专门针对政府官场发表的一份特别宣言:“去年四月三十日,以全能上帝的力量,我们的亲爱的女儿伊丽莎白女大公在她两岁时就去世了。通过为我们宣布这一悲伤事件,我们确信我们所有忠实的臣民将与我们分享我们的悲伤”[9]。以下为1808年5月21日法国特使维琴察公爵阿尔芒·德·科兰古向拿破仑的报告,5月12日正式宣布其逝世消息,同时科兰古代表法国大使馆,向N.P.表示深切哀悼。Rumyantsev [6,第 14 页]141],因为无法与皇帝交谈。第二天,在给拿破仑的报告中,大使指出:“皇帝对 12 日去世的女儿深感悲痛”[6,第 12 页]。148]。他们周围的人利用这一点,使配偶之间的关系恢复......” [6,第 14 页]151]。154] 1 。在同一份电报中,谈到其他主题,特使写道:“大公夫人的去世引起了人们对皇后的极大同情:她处于彻底的绝望之中,皇帝本人也感到深深的悲伤。5 月 22 日,科兰古在致外交部长卡多尔公爵让-巴蒂斯特·尚帕尼 (Jean-Baptiste Champagny) 的一份报告中报告称,皇帝“已经好几天没有外出或处理事务了”[6,第 14 页]。5月29日,使者报告:“自从太子妃死后,皇帝很少出来,也不邀请任何人到他的地方;”
自己。人工智能这一概念由约翰·麦卡锡在1956年多特蒙德会议上首次提出,自本世纪上半叶以来,它就被公认为计算机工程领域的重要研究领域之一,并毫无争议地成为技术的驱动力,并一直延续至今。人工智能具有学习、做出智能预测、解决复杂问题、适应多变条件、适应不同的人类语言和经验等特性,这些都可以算作人工智能的定义,人工智能也被纳入对教育培训过程的直接贡献阶段,特别是在教育信息管理方面。事实上,如今人工智能早已进入课堂,学生、教师或家长甚至还未来得及说一声“欢迎”,它就以“智能、自适应或个性化学习系统”的名义,将世界各地的高中和大学教育带入了一个全新的维度。这个维度延续了收集和分析每个学生产生的“大数据”的过程,这些数据现在是不可能管理和获取的。总而言之,可以说人工智能对教育的贡献有两点:一是在教育管理阶段,向学生和教育工作者管理和呈现信息;第二,在教学角色阶段,直接参与学习和教学过程。本研究从三个标题和三个问题来探讨人工智能在教育中的应用,并通过“人工智能到底是什么?”这一问题来回答智能及相关概念。带着问题;人工智能将如何助力教育?“人工智能将如何改善教育?”带着问题;最后一节“人工智能在教育领域有哪些应用?”议题下将介绍在教育培训领域可以使用的人工智能应用。人们认为这项研究将通过在教育的标题下以一般框架呈现人工智能主题,并揭示教师和学生如何使用人工智能,为该领域做出贡献。关键词:教育中的人工智能、智能、大脑、人工智能、专家系统。抽象的。人工智能的概念由约翰·麦卡锡在1956年多特蒙德会议上首次提出,自本世纪上半叶以来,人工智能被公认为技术驱动力之一,无疑是计算机科学最重要的研究领域之一。人工智能具有学习、做出智能预测、解决复杂问题、适应不断变化的条件、适应不同的语言和经验等特殊定义,它直接在教育和培训过程,特别是在教育信息管理方面发挥着贡献作用。事实上,人工智能早已被引入课堂环境,在学生、教师或家长尚未表示“欢迎”之前,它就以“智能、适应性或个性化学习系统”。这个维度延续到每个学生形成的“大数据”收集和分析,而管理和访问这些数据几乎是不可能的。简而言之,可以用两种形式来表达人工智能对教育的贡献;第一种方式是在教育管理阶段通过信息管理和向教师和学生呈现;第二种是教学角色,直接参与学习和教学过程。在本研究中,人工智能在教育中分为三个主题和三个问题进行分析。第一部分通过“什么是人工智能?”的问题讨论人工智能和相关概念。第二部分试图通过询问“人工智能如何发展教育?”来发现人工智能如何为教育做出贡献。在最后一部分,通过“人工智能在教育教学中的实践是什么”来分析可以/正在用于教育和教学的人工智能应用。
摘要引入原发性脑肿瘤是全球儿童和年轻人(CYP)发病率和死亡率的常见原因。神经认知功能受损是原发性脑肿瘤(PBT)幸存者的潜在严重后果。没有来自低收入和中等收入国家(LMIC)的深入研究来告知管理和随访。The research questions of this study were as follows: Are the sociodemographic factors (lower age of CYP, female gender, low socioeco- nomic status, low parental education), disease-related factors (high grade of tumor, presence of seizures, presence of hydro- cephalous), and treatment-related factors (adjuvant therapy, no surgical intervention, post-treatment seizures, placement of shunts) associated with decline在使用PBT的CYP进行12个月后,在神经认知结果中?方法从2020年11月至2023年7月在巴基斯坦卡拉奇的三级护理医院的Aga Khan大学医院和Jinnah研究生医学中心进行了一项前瞻性队列研究。所有5至21岁的CYP都有新诊断的PBT资格。心理学家在两点(即预处理前,在治疗后12个月)进行了神经认知评估。通过Slosson Intel-ligence工具评估了言语智能,修订了第三版(SIT-R3),Raven的渐进式矩阵(RPM)以及Wechsler Intelligence Intelligence Scale(WISC V)和Wechsler成人成人智能量表(WAIS-IV)的处理速度索引(WEIS-IV)。通过Stata版本12软件分析数据。在治疗后12个月重新评估其余25(52%)。通用估计方程(GEE)用于确定与处理后12个月内言语和非语言神经认知评分相关的因素。未经调整和调整后的β系数及其95%的置信区间。结果总共招募了48个具有PBT的CYP,其中23名(48%)丢失了随访,10(21%)死亡。在多变量分析中,通过治疗后癫痫发作β= -20.8(95%CI,-38.2,-3.4)预测,在12个月时的言语智能评分显着下降,没有正式的教育状况和较低的家庭月收入。同样,在治疗后癫痫发作beta = - 10.7(95%CI,-20.6,-0.8)中,感知推理得分的显着下降也被预测,母亲没有正规教育,家庭月收入较低。通过肿瘤组织学,治疗后癫痫发作β= - 33.9(95%CI,-47.7,-20.0)预测处理后12个月的加工速度评分恶化,预测了母亲的教育状况较低,并且每月较低。然而,手术肿瘤切除后的加工速度评分有所改善。在这项新研究中的结论中,治疗后的言语和非语言神经认知评分的平均变化与社会人口统计学,肿瘤和治疗因素有关。这些发现可能对使用PBT对较高风险的较高风险进行有针对性的早期心理筛查具有潜在的影响。对这些预测因素的识别可能是开发更具成本效益的治疗的基础,从而减轻了神经认知发病率的负担。为了建立普遍性,未来的研究应优先考虑大规模的多国研究。(试验注册:ClinicalTrials.gov标识符:NCT05709522)
背景:类脑计算将传统计算技术与受人脑启发的计算和认知思想、原理和模型相结合,以构建智能信息系统,用于我们的日常生活。图像和语音处理、盲信号分离、创造性规划和设计、决策、自适应控制、知识获取和数据库挖掘只是类脑计算应用的一些领域。我们对大脑功能了解得越多,信息系统就越智能。本书还介绍了心智和意识建模的一个主题,以及人工智能领域的其他新理论模型和应用。人脑是一种非常节能的装置。从计算角度来说,它仅需 20 瓦的功率就能每秒执行相当于十亿亿亿亿次浮点运算(1 后面跟着 18 个零)的数学运算。相比之下,世界上最强大的超级计算机之一“橡树岭前沿” (Oak Ridge Frontier) 最近演示了百亿亿次计算能力。然而,要实现这一壮举需要数百万倍的功率,即 20 兆瓦。我和我的同事希望通过大脑来指导开发强大而节能的计算机电路设计。你看,能源效率已经成为阻碍我们制造更强大的计算机芯片的一个主要因素。虽然更小的电子元件已成倍地提高了我们设备的计算能力,但进展却正在放缓。有趣的是,我们对大脑如何运作的看法一直是计算机世界的灵感源泉。为了理解我们是如何得出这种方法的,我们需要简单回顾一下计算的历史。人脑是宇宙中最复杂的物体之一。它能够在不断变化的环境中执行高级认知任务,例如抽象、概括、预测、决策、识别和导航。大脑这种较高的认知能力得益于它的功耗非常低,只有20W。大脑能效高的原因主要有两点:一是信息交换和处理是事件驱动的;因此,尖峰能量仅在需要的时间和地点被消耗。其次,神经元和突触位于同一个神经网络中,高度互联,每个神经元平均与104个其他神经元相连。神经元/突触共位意味着数据处理(由突触兴奋和神经元放电组成)和记忆(由突触权重和神经元阈值组成)在大脑内共享同一位置。许多研究工作旨在模仿人类大脑的计算类型,以实现非凡的能源效率。这是神经形态工程的目标,其中,脉冲神经网络(SNN)是利用人工神经元和突触开发出来的。 SNN 通常采用与 Rosenblatt 和 Minsky 开创的传统感知器网络相同的全连接 (FC) 架构。然而,在 SNN 中,神经元和突触通常表现出对施加的尖峰的时间依赖性响应,例如神经元内的整合和发射以及跨突触的兴奋性突触后电流 (EPSC)。这与用于计算机视觉和语音识别的人工智能 (AI) 加速器中的传统人工神经网络 (ANN) 形成对比,其中信息是同步的并且基于信号幅度而不是时间。大多数 SNN 通常依赖于互补金属氧化物半导体 (CMOS) 技术,具有两个显著的关键优势:首先,CMOS 技术在半导体行业生态系统中广泛可用,包括设计、制造和鉴定,为基于 CMOS 的神经形态工程成为成熟主题创造了条件。其次,CMOS晶体管可以按照摩尔定律小型化,其中减小
图 3-3. 深度感知 ................................................................................................................ 3-9 图 3-4. 世界上的沙漠地区 .............................................................................................. 3-13 图 3-5. 沙质沙漠地形 ...................................................................................................... 3-14 图 3-6. 岩石高原沙漠地形 ............................................................................................. 3-15 图 3-7. 山地沙漠地形 ...................................................................................................... 3-15 图 3-8. 世界上的丛林地区 ............................................................................................. 3-20 图 3-9. 风的类型 ............................................................................................................. 3-25 图 3-10. 微风 ............................................................................................................................. 3-25 图 3-11. 中等风 ............................................................................................................................. 3-26 图 3-12. 强风 ............................................................................................................................. 3-26 图 3-13. 山地(驻)波 ............................................................................................................. 3-27 图 3-14.与山地波相关的云层形成 ................................................................................ 3-28 图 3-15. 旋翼流动湍流 .............................................................................................. 3-28 图 3-16. 风穿过山脊 ................................................................................................ 3-29 图 3-17. 蛇形山脊 ...................................................................................................... 3-30 图 3-18. 风穿过山冠 ................................................................................................ 3-30 图 3-19. 肩风 ............................................................................................................. 3-31 图 3-20. 风穿过峡谷 ................................................................................................ 3-31 图 3-21. 山区起飞 ................................................................................................ 3-32 图 3-22. 高空侦察飞行模式 ........................................................................................ 3-35 图 3-23. 计算两点之间的风向 ................................................................................. 3-36 图 3-24.图 3-25. 使用圆形机动计算风向 .............................................................................. 3-37 图 3-25. 进近路径和要避开的区域 .............................................................................. 3-38 图 3-26. 贴地起飞或等高线起飞(地形飞行) ........................................................ 3-40 图 3-27. 以 45 度角穿越山脊(地形飞行) ............................................................. 3-41 图 3-28.图 3-29. 在地形飞行高度进行大角度转弯或爬升 .............................................................................. 3-42 图 3-30. 贴地飞行或等高线进近(地形飞行) ........................................................................ 3-43 图 4-1. 驾驶舱照明 ............................................................................................................. 4-2 图 4-2. 光照水平 ............................................................................................................. 4-3 图 4-3. 明视觉 ............................................................................................................. 4-4 图 4-4. 中视觉 ............................................................................................................. 4-4 图 4-5. 暗视觉 ............................................................................................................. 4-5 图 4-6. 白天盲点 ............................................................................................................. 4-5 图 4-7. 夜间盲点 ............................................................................................................. 4-6 图 4-8. 传感器能看到什么 ............................................................................................. 4-6图 4-10. 飞行员夜视成像系统操作顺序 ...................................................................................... 4-8 图 4-11. 微通道板 .............................................................................................................. 4-8 图 4-12. 荧光屏 ...................................................................................................................... 4-8 图 4-13. 光晕效应 ...................................................................................................................... 4-9 图 4-14. 配重 ...................................................................................................................... 4-9 图 4-15. 热传感器 ............................................................................................................. 4-11 图 4-16. 大气效应 ............................................................................................................. 4-12.......... 4-4 图 4-4. 中视觉 ............................................................................................................. 4-4 图 4-5. 暗视觉 ............................................................................................................. 4-5 图 4-6. 白天盲点 ............................................................................................................. 4-5 图 4-7. 夜间盲点 ............................................................................................................. 4-6 图 4-8. 传感器能看到什么 ............................................................................................. 4-6 图 4-9. 图像增强器 ............................................................................................................. 4-7 图 4-10. 飞行员夜视成像系统操作顺序 ............................................................................. 4-8 图 4-11. 微通道板 ............................................................................................................. 4-8 图 4-12. 荧光屏 ............................................................................................................. 4-8 图 4-13. 光晕效应 ............................................................................................................. 4-9 图 4-14. 配重 ............................................................................................................. 4-9热传感器................................................................................................ 4-11 图 4-16. 大气影响............................................................................................... 4-12.......... 4-4 图 4-4. 中视觉 ............................................................................................................. 4-4 图 4-5. 暗视觉 ............................................................................................................. 4-5 图 4-6. 白天盲点 ............................................................................................................. 4-5 图 4-7. 夜间盲点 ............................................................................................................. 4-6 图 4-8. 传感器能看到什么 ............................................................................................. 4-6 图 4-9. 图像增强器 ............................................................................................................. 4-7 图 4-10. 飞行员夜视成像系统操作顺序 ............................................................................. 4-8 图 4-11. 微通道板 ............................................................................................................. 4-8 图 4-12. 荧光屏 ............................................................................................................. 4-8 图 4-13. 光晕效应 ............................................................................................................. 4-9 图 4-14. 配重 ............................................................................................................. 4-9热传感器................................................................................................ 4-11 图 4-16. 大气影响............................................................................................... 4-124-9 图 4-15. 热传感器................................................................................................ 4-11 图 4-16. 大气影响................................................................................................... 4-124-9 图 4-15. 热传感器................................................................................................ 4-11 图 4-16. 大气影响................................................................................................... 4-12
Grand Kingdom 是一款 2016 年的角色扮演游戏,适用于 PS4 和 PlayStation Vita。它由 Monochrome 开发,由 Spike Chunsoft 和 NIS America 发行。该游戏旨在成为 Grand Knights History 的精神续作。一百年前,Uldein 帝国崩溃,将世界分成四个主要国家,陷入了一场永恒的战争:由女王 Gladius Ringland 领导的 Landerth;由国王 Graham Berngarde 领导的 Valkyr;由女王 Precia Teller 领导的 Fiel;以及由国王 Julius Wiseman 领导的 Magion。作为一名陷入这些无休止冲突的雇佣兵队长,你加入了 The Guild,一个致力于帮助那些没有祖国的人的组织。通过建立你自己的可定制的 Player Mooks 军队,你可以完成大国的任务或与怪物和敌方雇佣兵进行回合制战斗。你还可以与国家签订合同,参与史诗般的 PvP“行动”以赢得荣耀。此外,还有一场以 Uld 为中心的单人战役,Uld 是一个神秘的第五派系,自称是 Uldein 帝国的真正继承人。游戏中有各种职业,包括战士、枪骑兵、贵族等,每个职业都有独特的能力和游戏风格。魔法屏障和增益对龙法师来说至关重要,他们用近战和魔法能力造成巨大伤害,但在团队中占据两个位置。医疗兵治疗并支持小队,创建特殊区域来增强防御力,但在近距离战斗中会挣扎,并且缺乏连击能力。挑战者设置了爆炸陷阱,其他单位可以引爆这些陷阱造成高伤害,但这几乎是自杀行为。每次战斗后,部队会根据辅助计量表的饱满程度恢复生命值。小队人数限制为 4 人,另外还有两个雇佣兵位置。游戏中有身材丰满的女性角色,包括女王格拉迪斯·林兰和玛丽·玛丽。战斗医疗兵可以在支持队友的同时战斗。雇佣兵队长投票决定战争目的地,以谋取利益,民主存在缺陷。日文版有 DLC 任务、职业和物品,这些都包含在海外版中。由于 PvP 元游戏,永远的战争随之而来。友军防火被避免;攻击对朋友和敌人都同样有效,因此建议谨慎行事。职业有性别限制;例如,猎人仅限男性,弓箭手仅限女性。战争以灰色和灰色道德为特色,因为每个国家都在认真尝试建立土地和资源。在《Grand Kingdom》中,这是 Monochrome Corporation 为 PS4 和 Vita 开发的一款战术 JRPG,玩家可以利用辅助量表中的两点让角色在只有 2 HP 的情况下幸存下来。游戏的教程特别强调了此功能,警告角色在下一次行动中仍可能再次被击倒。此外,战争作为元游戏机制,允许签约国家的玩家捐赠材料以改进火炮并研究更好的武器,同时投票决定与哪些国家交战。游戏还设有每日签到功能,击中特定目标可获得奖励;在线组件让玩家参与领土控制式战斗,而无需直接面对面战斗;还有各种奖励,包括区域、社交、限时任务、不可思议的家族相似性、为乐趣和利益而战以及战争从未如此有趣。游戏采用回合制战斗,单位使用各种动作参与战斗,包括使用武器和魔法攻击,以及支援、防御和治疗能力。将单位定位成阵型和执行行动技巧是战斗的关键组成部分。每个单位都有其独特的动作,其中一些能够治疗盟友或攻击敌人。状态条件可用于通过影响敌人的移动和力量来获得战斗优势。战场本身可以设有阻碍阵型的障碍物和陷阱,或改变单位指挥方式的基于旗帜的系统。不战斗时,小队以棋子表示,每个任务允许的回合数有限。遇到敌方棋子会触发战斗,而遇到盟军棋子则可以治愈,但通常需要付出代价。游戏还具有不同国家或地区分配的各种任务和目标。这些任务可能需要在一定时间内完成特定任务或战斗。玩家可以选择参与这些任务或在指定区域自由移动他们的单位。除了标准战役模式外,还有可选模式,例如国家特定任务和基于区域的探索。在这些区域内,小队可以收集资源、与敌人战斗、打开宝箱获取稀有物品、参与争夺金钱或奖品的战斗以及击败“赏金”小队以获得奖励。除了任务之外,玩家还可以访问四个国家的首都购买物品、签订合同、从铁匠那里获得新装备并查看他们的战争记录。公会是所有单位的大本营,提供自己的商店和独特的物品、训练营,让单位可以学习新技能,以及有关为其他国家工作的敌对小队的信息。游戏支持单人模式和在线多人模式,玩家可以与不同国家的玩家对战,并通过入侵扩大国家领土。PS4 和 Vita 版本支持在线跨平台游戏,但不支持跨平台保存。防御和治疗能力。将单位定位到阵型中并执行动作技巧是战斗的关键组成部分。每个单位都有其独特的动作,其中一些能够治疗盟友或攻击敌人。状态条件可用于通过影响敌人的移动和力量来获得战斗优势。战场本身可能具有阻碍阵型的障碍物和陷阱,或基于旗帜的系统,这些系统会改变部队的指挥方式。当不战斗时,小队将表示为棋子,每个任务允许的回合数有限。遇到敌方棋子会触发战斗,而遇到盟军棋子则可以治愈,通常需要付出代价。游戏还具有不同国家或地区分配的各种任务和目标。这些任务可能需要在一定时间内完成特定任务或战斗。玩家可以选择参与这些任务或在指定区域自由移动他们的单位。除了标准战役模式外,还有可选模式,例如国家特定任务和基于地区的探索。在这些区域内,小队可以收集资源、与敌人战斗、打开宝箱获取稀有物品、参与争夺金钱或奖品的战斗,以及击败“赏金”小队以获得奖励。除了任务之外,玩家还可以访问四个国家的首都购买物品、签订合同、从铁匠那里获得新装备并查看他们的战争记录。公会是所有单位的大本营,提供自己的商店和独特的物品、训练营,让单位可以学习新技能,以及有关为其他国家工作的对手小队的信息。该游戏支持单人模式和在线多人模式,允许玩家与属于不同国家的其他玩家战斗,并通过入侵扩大其国家的领土。PS4 和 Vita 版本支持在线跨平台游戏,但没有跨平台保存。防御和治疗能力。将单位定位到阵型中并执行动作技巧是战斗的关键组成部分。每个单位都有其独特的动作,其中一些能够治疗盟友或攻击敌人。状态条件可用于通过影响敌人的移动和力量来获得战斗优势。战场本身可能具有阻碍阵型的障碍物和陷阱,或基于旗帜的系统,这些系统会改变部队的指挥方式。当不战斗时,小队将表示为棋子,每个任务允许的回合数有限。遇到敌方棋子会触发战斗,而遇到盟军棋子则可以治愈,通常需要付出代价。游戏还具有不同国家或地区分配的各种任务和目标。这些任务可能需要在一定时间内完成特定任务或战斗。玩家可以选择参与这些任务或在指定区域自由移动他们的单位。除了标准战役模式外,还有可选模式,例如国家特定任务和基于地区的探索。在这些区域内,小队可以收集资源、与敌人战斗、打开宝箱获取稀有物品、参与争夺金钱或奖品的战斗,以及击败“赏金”小队以获得奖励。除了任务之外,玩家还可以访问四个国家的首都购买物品、签订合同、从铁匠那里获得新装备并查看他们的战争记录。公会是所有单位的大本营,提供自己的商店和独特的物品、训练营,让单位可以学习新技能,以及有关为其他国家工作的对手小队的信息。该游戏支持单人模式和在线多人模式,允许玩家与属于不同国家的其他玩家战斗,并通过入侵扩大其国家的领土。PS4 和 Vita 版本支持在线跨平台游戏,但没有跨平台保存。除了标准战役模式外,还有可选模式,例如特定国家的任务和基于区域的探索。在这些区域内,小队可以收集资源、与敌人战斗、打开宝箱获取稀有物品、参与争夺金钱或奖品的战斗,并击败“赏金”小队以获得奖励。除了任务之外,玩家还可以访问四个国家的首都购买物品、签订合同、从铁匠那里获得新装备并查看他们的战争记录。公会是所有单位的大本营,提供自己的商店和独特物品、训练营,让单位可以学习新技能,以及有关为其他国家工作的对手小队的信息。该游戏支持单人模式和在线多人模式,允许玩家与属于不同国家的其他玩家作战,并通过入侵扩大其国家领土。PS4 和 Vita 版本支持在线跨平台游戏,但没有跨平台保存。除了标准战役模式外,还有可选模式,例如特定国家的任务和基于区域的探索。在这些区域内,小队可以收集资源、与敌人战斗、打开宝箱获取稀有物品、参与争夺金钱或奖品的战斗,并击败“赏金”小队以获得奖励。除了任务之外,玩家还可以访问四个国家的首都购买物品、签订合同、从铁匠那里获得新装备并查看他们的战争记录。公会是所有单位的大本营,提供自己的商店和独特物品、训练营,让单位可以学习新技能,以及有关为其他国家工作的对手小队的信息。该游戏支持单人模式和在线多人模式,允许玩家与属于不同国家的其他玩家作战,并通过入侵扩大其国家领土。PS4 和 Vita 版本支持在线跨平台游戏,但没有跨平台保存。