慢性疼痛影响全球大约30.3%的成年人,提出了一个重大的全球健康问题,严重影响了个人的生活质量并带来了重大的社会经济挑战。传统的疼痛管理方法,例如物理疗法和药理治疗,主要集中于疼痛的生物学方面,同时经常忽略心理和社会因素。然而,神经科学的最新进展表明,慢性疼痛受到中枢神经系统的变化的影响,包括中枢敏化和神经可塑性等机制。本文研究了当代神经科学知识的干预措施,包括疼痛神经科学教育(PNE),正念实践和认知功能疗法(CFT),这些疗法(CFT)针对这些神经生物学变化,以改善疼痛感知和行为。这些干预措施有助于恢复大脑的疼痛途径,促进长期缓解疼痛和功能恢复。此外,将基于神经科学的方法与常规疗法结合起来可增强治疗结果。这项工作强调了对个性化方法的需求以及新兴技术的整合,以增强慢性疼痛管理的可及性和有效性。
麻醉引起的神经毒性是与麻醉相关的一系列对中枢或周围神经系统的不利副作用。2000 年代初,从啮齿动物到非人类灵长类动物的几项动物模型研究表明,全身麻醉会导致神经细胞凋亡和神经发育障碍。很难将这一证据转化为临床实践。然而,一些研究表明,早期麻醉暴露会对人类产生持久的行为影响。右美托咪啶是一种镇静剂和镇痛剂,对 α-2 ( ɑ 2 ) 肾上腺素能受体以及咪唑啉 2 型 (I2) 受体具有激动剂活性,使其能够影响细胞内信号传导并调节细胞过程。除了易于输送、分布和从体内消除外,右美托咪啶还因其能够提供神经保护,防止细胞凋亡、缺血和炎症,同时保持神经可塑性而脱颖而出,许多动物研究表明了这一点。这一特性使得右美托咪啶作为一种麻醉剂具有独特的优势,可以避免麻醉过程中可能出现的神经毒性。
经颅磁刺激(TMS)是一种非侵入性脑神经刺激技术,可以用作中风后神经恢复的辅助治疗技术之一。动物研究表明,用大脑中动脉闭塞(MCAO)模型对大鼠的TMS治疗减少了大脑梗塞的体积,并改善了模型大鼠的神经功能障碍。此外,临床病例报告还表明,TMS治疗在中风患者中具有阳性的神经保护作用,改善了各种冲程后神经功能缺陷,例如运动功能,吞咽,认知功能,语音功能,中枢后疼痛,痉挛,痉挛,痉挛和其他后造成后频段。然而,尽管许多研究表明TMS在中风患者中具有神经保护作用,但其神经保护机制也不清楚。因此,在本综述中,我们描述了TMS在神经发生,血管生成,抗炎,抗氧化剂和抗凋亡方面提高神经功能功能的潜在机制,并提供了TMS在Stroke中多神经学功能障碍中当前TMS临床应用的见解。最后,总结了TMS所面临的一些当前挑战,并提出了一些有关其未来研究方向的建议。
跨大脑区域分布的功能相互作用模式被认为为有意识的信息处理提供了支架,在意识丧失时观察到明显的拓扑变化。然而,要在宏观尺度的大脑网络组织和有意识的认知之间建立牢固的联系,需要直接研究意识系统性减弱过程中神经心理学相关的结构修改。在这里,我们评估了一组健康参与者在基线静息状态 fMRI 以及两种不同水平的丙泊酚诱导镇静下的脑图整体和区域干扰。我们发现了一种持久的模块化架构,但构成更广泛的富人俱乐部集体一部分的大脑中枢发生了显著的重组。此外,富人俱乐部连接强度的降低与参与者在语义判断任务中的表现显着相关,表明这种高阶拓扑特征对有意识认知的重要性。这些结果强调了大脑功能相互作用的整体和区域特性在支持有意识认知方面的显著相互作用,这与我们对意识临床障碍的理解有关。
α 波段活动是一种神经特征,长期以来人们推测它与使神经处理偏向于所关注的信息有关(参见 Van Diepen 等人,2019 年)。许多研究提出 α 侧化,即一个半球的 α 波段功率同时下降而另一个半球的 α 波段功率增加,是视觉空间注意力转移的神经标志。在最近的研究中,Bagherzadeh 等人 (2019) 研究了 α 波段调节对视觉空间注意力部署的潜在因果作用。在一项神经反馈任务中,参与者学会了上调顶叶 α 波段幅度侧化,同时测量了注意力转移的标志。至关重要的是,左侧和右侧顶叶 MEG 传感器的 α 侧化增强有利于在方向匹配样本任务中取得好成绩,因为它增加了要记忆的刺激的对比度。核心问题是上调的 alpha 侧化是否会导致相应的视觉空间注意转移。通过不同的测量方法,提供了这种转移的证据:(1)对于神经反馈任务,作者报告了与半球对侧的探测相关诱发反应增强,而 alpha 被下调。在神经反馈任务中,(2)alpha 波段功率和(3)反应时间仍然描绘了后续波斯纳范式中性试验的侧化。最后,(4)凝视方向转移到半球对侧,在自由观看任务中显示 alpha 降低。这些测量使作者得出结论,神经反馈期间 alpha 侧化的增加导致了空间注意的转移(见图 1A)。但是,声称 alpha 侧化导致注意力反向转移,即部署隐蔽空间注意以增加 alpha 侧化的策略,必须排除。在我们看来,作者的论证思路存在一些缺陷,数据确实提供了一些证据,表明受试者使用空间注意力(通过关注中枢刺激的侧化方面)来改变他们的 alpha 侧化(图 1B)。作者表示,目前尚不清楚参与者使用了哪些策略来侧化 alpha 幅度,并提出转移注意力本身对于该任务来说并不是必需的,因为它只涉及一个中枢呈现的刺激,因此参与者依赖于偶然反馈来学习改变 alpha 侧化。尽管如此,隐性转移注意力代表了一种有效的策略,可以产生可靠的可测量 alpha 波段活动调节,这种调节通常在 BCI 中得到利用(Jensen 等人,2011;Treder 等人,2011)。为了控制受试者确实避免使用与空间注意相关的策略,作者比较了微扫视的方向作为隐性空间注意的标志
结果:所有机构 (n = 4, 100%) 均提供高血压和糖尿病服务,平均有 118 名护士 (IQR 103–140) 和 5 名医生 (IQR 2–8)。只有一家机构 (n = 1, 25%) 在过去一年开展过心血管疾病培训。所有 4 家机构均配备所有基本设备 (体重秤、听诊器、血糖仪和血压监测仪)。抗高血压药物包括 ACE 抑制剂 (n = 3; 75%)、钙通道阻滞剂 (n = 4; 100%)、中枢作用药物 (n = 4; 100%) 和噻嗪类药物 (n = 4; 100%),以及二甲双胍 (n = 4; 100%) 和胰岛素 (n = 2; 50%) 等抗糖尿病药物。仅有两家机构(n = 2;50%)能够进行所需的测试(糖化血红蛋白、全血细胞计数、肾功能、血清肌酐、血尿素、电解质和血脂测试)。总体准备度得分为 75.5%,基本药物(83.5%)、基本设备(78%)、心血管疾病管理临床指南(75%)和诊断能力(65.5%)。特派团设施的准备度得分较高(96%),政府设施的准备度得分较高(55%)。
疼痛 6.4 (0.1) 6.3 (0.1) 1.3 (0.02) 1.4 (0.0) 疲劳 3.3 (0.1) 3.4 (0.1) 1.5* (0.02) 1.0 (0.0) 一般性心血管疾病 高血压 4.3 (< 0.1) 5.1* (< 0.1) 0.9 (0.0) 0.9 (0.0) 中枢和周围神经系统疾病 头痛 7.6 (0.3) 7.2 (0.2) 3.1 (0.08) 3.2 (0.10) 头晕 6.2 (0.2) 6.7 (0.3) 2.4 (0.08) 2.0 (0.02) 胃肠道 腹痛 5.6 (0.7) 7.1* (1.0) 2.3 (0.26) 2.8 (0.27) 消化不良 5.2 (0.6) 6.1* (0.7) 2.0 (0.08) 1.9 (0.02) 腹泻 4.5* (0.4) 3.4 (0.3) 2.1 (0.11) 2.2 (0.13) 恶心 3.4 (0.5) 3.8 (0.4) 1.9 (0.18) 2.3 (0.08) 代谢和营养障碍 高胆固醇血症 4.0 (0) 4.4 (< 0.1) 0.1 (0.0) 0.2 (0.0) 肌肉骨骼系统疾病 关节痛 6.3 (0.1) 6.2 (0.1) 0.9 (0.0) 0.9 (0.0) 背痛5.8 (0.1) 5.3 (< 0.1) 1.0 (0.03) 1.2 (0.0) 心肌、心内膜、心包和瓣膜疾病 心绞痛 10.1 (0.6) 10.7 (0.4) 0.1 (0.0) 0.1 (0.0) 冠状动脉疾病
糖尿病脂质(DI)是一种罕见的内分泌疾病,涉及抗利尿激素(ADH),涵盖了中央和肾脏发质原因。无法反应或产生ADH会导致肾脏无法吸收水,导致多尿症,如果缺乏水合,则高钠血症。di无法治愈,对许多临床医生来说是一个陌生的疾病过程。必须将这种诊断与原发性多次多尿和低渗多尿的原因区分开。病理生理学的主要分支取决于ADH病理学水平:大脑或肾脏。及时的诊断和治疗至关重要,因为DI会导致大量发病率和死亡率。诊断的黄金标准是水剥离测试,然后是脱氨加压素给药。关于ADH的新替代标记称为Copeptin的有希望的研究,该标记可能会简化和提高将来诊断DI的准确性。DI患者需要足够的水接收水,并且在治疗方法上有细微差别,具体取决于患者是否被诊断出患有中枢或肾病性DI。本文介绍了DI识别,诊断和治疗的逐步方法。
摘要微生物群 - 脑轴是通信的重要途径,可能会动态地有助于阿尔茨海默氏病(AD)发病机理。病理共生肠道菌群改变,称为营养不良,可以影响肠道通透性并打破血脑屏障,这可能通过氧化还原信号传导,神经元,免疫和代谢途径触发AD发病机理。营养不良增加氧化应激。氧化剂通过通过Toll样受体识别微生物衍生的病原体并启动Indermator过程来影响先天免疫系统。大多数肠道微生物组研究工作都强调了肠道微生物群和AD之间的关系,但是无法充分证明精确细菌与脑功能障碍之间的精确细菌与脑功能障碍之间的贡献联系。在这里,我们总结了AD中氧化应激,炎症和肠道营养不良之间基本联系的当前信息。这篇综述强调了肠道菌群参与氧化应激,炎症,包括中枢和外周交叉词在内的免疫反应的调节。它为AD中的新型预防和治疗方法提供了见解。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。