摘要 — 研究表明,通信系统和接收器受到高功率相邻信道信号(称为阻塞器)的影响,这些信号会使射频 (RF) 前端进入非线性操作。由于物联网 (IoT) 等简单系统将与复杂的通信收发器、雷达和其他频谱消费者共存,因此需要采用简单但自适应的 RF 非线性解决方案来保护这些系统。因此,本文提出了一种灵活的数据驱动方法,该方法使用简单的人工神经网络 (ANN) 来帮助消除解调过程中的三阶互调失真 (IMD)。我们引入并数值评估了两个人工智能 (AI) 增强型接收器——ANN 作为 IMD 消除器和 ANN 作为解调器。我们的结果表明,简单的 ANN 结构可以显著改善具有强阻塞器的非线性接收器的误码率 (BER) 性能,并且 ANN 架构和配置主要取决于 RF 前端特性,例如三阶截取点 (IP3)。因此,我们建议接收器具有硬件标签和随时间监控这些标签的方法,以便可以有效地定制 AI 和软件无线电处理堆栈并自动更新以应对不断变化的操作条件。索引术语 —AI、ANN、IMD、IP3、频谱共享。
分枝杆菌属包括导致人类和动物结核病 (TB) 的结核分枝杆菌复合群 (MTBC) 的种、导致麻风病的麻风分枝杆菌,以及通常称为非典型或非结核分枝杆菌 (NTM) 的分枝杆菌种,其中包括导致布鲁里溃疡的溃疡分枝杆菌。与 MTBC 组成员不同,NTM 不是人类的专性寄生虫,而是土壤和水的正常居民,可以在天然水源和处理过的水源中找到 [1]。已正式确认的 NTM 有 200 多种 [2],其中已知约 25 种与人类疾病密切相关。一些种与引起类似 TB 症状的肺部疾病有关 [1]。由于它们的栖息地,人类每天都会接触到这些细菌。因此,必须将 NTM 病与简单的定植或临床样本污染(例如自来水)区分开来 [1,3]。与结核病不同,NTM 引起的疾病的全球流行病学尚不明确。从临床标本中分离 NTM 的病例主要见于工业化国家,患病率和发病率各不相同。基于肺部标本分离株的研究报告称,2004 年至 2006 年美国的患病率为每 100,000 人 1.4 至 6.6 人 [ 4 ],2010 年加拿大安大略省的患病率为每 100,000 人 9.8 人 [ 5 ],2020 年德国的患病率为每 100,000 人 5.8 人 [ 6 ]。也有报告称,2012 年英格兰的发病率为每 100,000 人 6.1 人 [ 7 ],2020 年德国的发病率为每 100,000 人 5.3 人 [ 6 ]。在结核病流行国家,NTM 的报告频率较低,并且主要发生在高危人群中,特别是具有易感条件或免疫力低下的人群 [ 8 ]。然而,工业化国家的经验表明,结核病负担的下降也增加了发现的 NTM 病例数。随着另一种环境下结核病防治规划的加强,我们或许也会看到类似的情况,对中低收入国家而言,诊断和临床治疗的挑战将日益加大[9]。NTM 肺病的诊断基于临床、放射学和微生物学标准[1]。在大多数资源有限的国家,基本上无法进行以实验室为基础的 NTM 检测,无法与 MTBC 相区分并确定其菌种。显微镜检查是最容易获得的技术,它将 MTBC 和 NTM 识别为抗酸杆菌 (AFB),但无法区分它们。自 2010 年以来,世界卫生组织 (WHO) 已推荐使用 GeneXpert MTB/RIF(Xpert)等快速分子检测作为结核病诊断的初始检测,该检测具有更高的灵敏度和特异性 [10]。该检测仅可识别样本中是否存在 MTBC 菌种。如果 AFB 阳性痰液样本经 Xpert 检测呈 MTBC 阴性,则可能提示感染 NTM [11]。在马里,已报道过 NTM 感染病例,特别是在抗结核治疗失败或结核病治愈后复发的患者中 [ 12 ]。在该国引入 Xpert 后,AFB 涂片阳性而 Xpert 检测阴性的疑似 NTM 感染病例报告更频繁 [ 13 ]。
WCA SE 于 2021-2023 年实施,为各国提供催化资金以实施创新的结核病病例发现方法,并在关键结核病组成部分提供技术援助,以支持创新的引入和实施。这些方法旨在解决结核病病例发现和治疗方面的关键差距,根据当地和全球证据表明,系统和协调的主动病例发现方法——通过社区参与提高对结核病的认识,接触弱势群体,减少耻辱和歧视,改善获得治疗的机会——已成功减轻疾病负担。关键策略包括项目质量效率 (PQE)、使用胸部 X 光和 CAD 软件的移动筛查活动、结核病/艾滋病毒一站式服务以及社区、权利和性别 (CRG) 和耻辱评估和计划。
电子束粉末床熔合 (E-PBF) 是一种用于金属零件增材制造的极具吸引力的技术。然而,工艺改进需要精确控制电子束传递给粉末的能量。在这里,我们使用可调谐二极管激光吸收光谱 (TD-LAS) 来测量 E-PBF 期间蒸发的钛原子的速度分布函数。激光二极管发射的窄光谱范围允许对蒸发原子进行高分辨率吸收分布分析,从而准确确定它们在熔化过程中的多普勒展宽、密度和温度。获得的蒸汽温度表明熔池表面相对于钛的低压 (0.1 Pa) 沸点过热,表明蒸发发生在非平衡条件下。我们表征了线性能量密度对钛蒸发的影响,发现它与饱和蒸汽压一致。我们对蒸汽特性的表征为熔池模拟提供了可靠的输入。此外,可进一步利用TD-LAS来防止低浓度合金元素的蒸发,从而防止打印部件出现缺陷。
强烈的Tera-Hertz(Thz)脉冲的最新进展使得可以研究凝结物质中非线性光学现象的低频对应物,通常用可见光研究,因为这是Thz Kerr效应的情况[1-3]。DC Kerr ef-fect检测到与所施加的直流电场平方成正比的等同于各向同性的材料中的双折射,它是对介质的第三阶χ(3)非线性光学响应的标准测量[4]。基本上,AC探头E AC(ω)和直流泵E DC场之间的四波混合导致非线性极化P(3)〜χ(3)E 2 DC E AC(省略了空间索引)。p(3)依次调节ACFILD的相同频率ω的折射率,其空间各向异性由E DC的方向设置。在其光学对应物中,平方ACFER的零频率的光谱成分在DC组件的零频率上起着相同的作用。最近,THZ和光脉冲已在泵探针设置中合并,以测量所谓的Thz Kerr效应[2]。的主要优势比其全光率降级是,强烈的Thz泵脉冲可以通过在相同频率范围内匹配类似拉曼的低覆盖式激发,例如晶格振动[5-8],或者在破碎的态度状态下(对于9-13-13]或超级效果[14] [14] [14],可以强烈增强信号。这种共振反应通常加起来是电子的背景响应,并且可以用来识别不同自由度之间耦合的微观机制。作为一般规则,Thz Kerr响应(将其缩放为THZ电场平方)不受红外活性
Niklas F.C. Hummel,1,2,3,4 Kasey Markel,1,2,3 Jordan Stefani,5 Max V. Staller,5,6,7 *和Patrick M. Shih 1,2,2,2,3,3,8,9,9,9, * 1工厂和微生物系,加利福尼亚大学,伯克利大学,CA 94720,CA 94720,USAD CACTUTTE 94608,美国3美国3环境基因组学和系统生物学部,劳伦斯·伯克利国家实验室,伯克利,CA 94720,美国4美国4号生物学系,Technische Universit,Darmstadt,64287 Darmstadt,DARMSTADT,DARMSTADT,DEMANY DEMANY,DEMANY 5 MATILIA of CALICALIA of CALICATION of CALICATIA美国伯克利,加利福尼亚州94720,美国7 Chan Zuckerberg Biohub-San Francisco,旧金山,CA 9415,美国8 Innovative Genomics Institute,加利福尼亚大学,伯克利分校,CA 94720,美国94720,美国9铅联系 *通讯 ),pmshih@berkeley.edu(p.m.s.) https://doi.org/10.1016/j.cels.2024.05.007Niklas F.C.Hummel,1,2,3,4 Kasey Markel,1,2,3 Jordan Stefani,5 Max V. Staller,5,6,7 *和Patrick M. Shih 1,2,2,2,3,3,8,9,9,9, * 1工厂和微生物系,加利福尼亚大学,伯克利大学,CA 94720,CA 94720,USAD CACTUTTE 94608,美国3美国3环境基因组学和系统生物学部,劳伦斯·伯克利国家实验室,伯克利,CA 94720,美国4美国4号生物学系,Technische Universit,Darmstadt,64287 Darmstadt,DARMSTADT,DARMSTADT,DEMANY DEMANY,DEMANY 5 MATILIA of CALICALIA of CALICATION of CALICATIA美国伯克利,加利福尼亚州94720,美国7 Chan Zuckerberg Biohub-San Francisco,旧金山,CA 9415,美国8 Innovative Genomics Institute,加利福尼亚大学,伯克利分校,CA 94720,美国94720,美国9铅联系 *通讯),pmshih@berkeley.edu(p.m.s.)https://doi.org/10.1016/j.cels.2024.05.007
本文提出了一种空中交通预测算法,该算法对飞机进行了观察并对其飞机类型进行了分类,估计飞机的意图和加入机场交通模式的方法,并预测飞机的未来轨迹。开发算法,使自动驾驶飞机能够安全地插入非壁炉交通模式,需要解决一些挑战。这些挑战范围从交通检测到传感器融合到自己的船舶轨迹重建。对轨迹重新载体算法至关重要的是有关操作环境中所有交通飞机的未来行为的信息。所提出的交通预测算法通过定期测量交通飞机位置和速度来生成此信息,以按速度类对飞机进行分类,估计飞机将如何接近跑道,并在跑道上构建预测的轨迹,包括未来的位置和速度。提出的算法的预测是任何下游流量测序和自己的SHIP轨迹计划例程的必要输入。使用的算法使用大约300个随机交通轨迹进行基准测试,涵盖了四个车辆重量类别和八种交通输入类型。虽然该算法可以在终端区域处理多个交通车辆,但没有预测交通交通的交互。单独处理每辆交通车辆。
CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
Niklas F.C. Hummel,1,2,3,4 Kasey Markel,1,2,3 Jordan Stefani,5 Max V. Staller,5,6,7 *和Patrick M. Shih 1,2,2,2,3,3,8,9,9,9, * 1工厂和微生物系,加利福尼亚大学,伯克利大学,CA 94720,CA 94720,USAD CACTUTTE 94608,美国3美国3环境基因组学和系统生物学部,劳伦斯·伯克利国家实验室,伯克利,CA 94720,美国4美国4号生物学系,Technische Universit,Darmstadt,64287 Darmstadt,DARMSTADT,DARMSTADT,DEMANY DEMANY,DEMANY 5 MATILIA of CALICALIA of CALICATION of CALICATIA美国伯克利,加利福尼亚州94720,美国7 Chan Zuckerberg Biohub-San Francisco,旧金山,CA 9415,美国8 Innovative Genomics Institute,加利福尼亚大学,伯克利分校,CA 94720,美国94720,美国9铅联系 *通讯 ),pmshih@berkeley.edu(p.m.s.) https://doi.org/10.1016/j.cels.2024.05.007Niklas F.C.Hummel,1,2,3,4 Kasey Markel,1,2,3 Jordan Stefani,5 Max V. Staller,5,6,7 *和Patrick M. Shih 1,2,2,2,3,3,8,9,9,9, * 1工厂和微生物系,加利福尼亚大学,伯克利大学,CA 94720,CA 94720,USAD CACTUTTE 94608,美国3美国3环境基因组学和系统生物学部,劳伦斯·伯克利国家实验室,伯克利,CA 94720,美国4美国4号生物学系,Technische Universit,Darmstadt,64287 Darmstadt,DARMSTADT,DARMSTADT,DEMANY DEMANY,DEMANY 5 MATILIA of CALICALIA of CALICATION of CALICATIA美国伯克利,加利福尼亚州94720,美国7 Chan Zuckerberg Biohub-San Francisco,旧金山,CA 9415,美国8 Innovative Genomics Institute,加利福尼亚大学,伯克利分校,CA 94720,美国94720,美国9铅联系 *通讯),pmshih@berkeley.edu(p.m.s.)https://doi.org/10.1016/j.cels.2024.05.007
货币等值(截至 2006 年 11 月 10 日) 货币单位:非洲金融共同体法郎 UA1 = 1.4898 美元 UA1 = 762.46 非洲金融共同体法郎 1 美元 = 510.85 非洲金融共同体法郎 预算年度 1 月 1 日 – 12 月 31 日 首字母缩略词和缩写 ACDA 中非农业发展署 ACFPE 中央培训和就业署 ADECAF 家庭咖啡生产发展署 ANEAC 中非民族企业家和工匠协会 ASYCUDA 海关数据自动化系统 BEAC 中非国家银行 BECDOR 钻石和黄金评估和管理局 BICA 中非国际银行 BIVAC 检查估价评估和管理局 BMPC 摩洛哥-中非人民银行 BSIC 萨赫勒-撒哈拉银行 CAISTAB 农业出口价格稳定与均衡基金CAR 中非共和国 CBCA 商业银行 Centrafrique CCIMA 工商矿业手工业商会 UNPC CCJA 共同法院和仲裁院 CEEAC 中非国家经济共同体 CEMAC 中非经济和货币共同体 CEN-SAD 萨赫勒-撒哈拉国家共同体 CFDT 法国纺织纤维发展公司 COMESA 东部和南部非洲共同市场 DGSEES 统计、社会和经济研究总司 DTIS 诊断性贸易一体化研究 EPA 经济伙伴关系协定 ESPF 经济和社会政策框架文件 FEPUCA 中非生产者与使用者联合会 GDP 国内生产总值 GICA 中非跨行业小组 GIR 农村利益集团 ICAO 国际民用航空组织 ICO 国际咖啡组织 ICRA 中非农艺研究所 IFWG 综合框架工作组 ILO 国际劳工组织 IMF 国际货币基金组织