摘要 纤毛病是一种广泛的遗传性发育和退行性疾病,与运动纤毛或原发性非运动纤毛的结构或功能缺陷有关。已知的纤毛病致病基因约为 200 种,虽然基因检测可以提供准确的诊断,但接受基因检测的纤毛病患者中有 24-60% 并未得到基因诊断。部分原因是,根据美国医学遗传学学院和分子病理学协会的现行指南,很难对由错义或非编码变异引起的疾病做出可靠的临床诊断,而这些变异占疾病病例的三分之一以上。PRPF31 突变是退行性视网膜纤毛病常染色体显性视网膜色素变性的第二大常见病因。在这里,我们提出了一种高通量高内涵成像检测方法,可定量测量 PRPF31 错义变异的影响,符合最近发布的临床变异解释基线标准体外测试标准。该检测利用了使用 CRISPR 基因编辑生成的新型 PRPF31 +/– 人视网膜细胞系,以提供具有明显更少纤毛的稳定细胞系,其中表达和表征了新的错义变体。我们表明,在零背景下表达纤毛病基因错义变体的细胞的高内涵成像可以根据纤毛表型表征变体。我们希望这将成为临床表征意义不明确的 PRPF31 变体的有用工具,并可以扩展到其他纤毛病中的变体分类。
摘要:我们进行了广泛的理论和实验研究,以确定短周期 GaN/AlN 超晶格 (SL) 中 GaN 和 AlN 层之间的界面相互扩散对拉曼光谱的影响。通过从头算和随机元等位移模型框架,模拟了具有尖锐界面和不同界面扩散程度的 SL 的拉曼光谱。通过对 PA MBE 和 MOVPE 生长 SL 的理论计算结果与实验数据的比较,表明与 A 1 (LO) 限制声子相关的能带对界面扩散程度非常敏感。结果获得了 A 1 (LO) 限制声子范围内的拉曼光谱与 SL 中界面质量之间的相关性。这为使用拉曼光谱分析短周期 GaN/AlN SL 的结构特征开辟了新的可能性。
随着相关应用领域的扩大,人们对 AlN 基 III 族金属氮化物半导体合金(如 (Al,Ga)N 和 (Al,In,Ga)N)的关注度也与日俱增。首先,人们之所以对它们感兴趣,是因为它们具有可调特性,可用于发光二极管 (LED) 和其他光电应用 [1],并且具有宽带隙 (WBG) 半导体特性,可用于射频 (RF) 和电力电子应用中的高电子迁移率晶体管 (HEMT)。[2] 2009 年,首次有报道称在 AlN 中添加钪可显著提高压电响应 [3],并很快被用于压电薄膜器件,如手机中的薄膜体声波谐振器 (FBAR)。 [4] 最近有关 Al 1-x Sc x N(x ≥ 0.1)的铁电性的报道,作为第一种纤锌矿铁电材料,引起了进一步的科学兴趣[5,6],也引起了作为混合逻辑存储器设备候选者的重大技术兴趣。
BRAF中的突变在晚期乳头状和甲状腺甲状腺癌(PTC和ATC)中很常见。但是,BRAF突变的PTC患者目前缺乏针对此途径的疗法。尽管BRAF和MEK1/2对BRAF-突变ATC患者的批准组合,但这些患者经常进展。因此,我们筛选了一组BRAF突变甲状腺癌细胞系,以识别新的治疗策略。我们表明甲状腺癌细胞具有抗BRAF抑制作用(BRAFI)的侵袭增加,并且对BRAFI的反应促进侵入性分泌组。使用反相蛋白阵列(RPPA),我们确定了响应BRAFI治疗的细胞外基质蛋白(纤连蛋白)的表达增长近2倍,而纤连蛋白纤维蛋白分泌的相应增加了1.8至3.0倍。因此,外源性纤连蛋白的添加表现出Brafi诱导的侵袭增加,而抗纤维蛋白在抗性细胞中的耗竭导致侵袭增加。我们进一步表明,BRAFI诱导的侵袭可以通过抑制ERK1/2来阻止。在抗BRAFI的患者衍生异种移植模型中,我们发现对BRAF和ERK1/2的双重抑制减慢了肿瘤的生长和循环纤连蛋白的降低。使用RNA序列,我们将EGR1鉴定为响应BRAF/ERK1/2抑制作用的顶级下调基因,并且进一步表明,对于Brafi诱导的侵袭和纤维蛋白对BRAFI的响应而言,EGR1对于BRAFI诱导的诱导诱导是必要的。
f i g u r e 3可溶性血栓瘤蛋白(STM)和组织型纤溶酶原激活剂诱导的血浆凝块裂解时间(TPA-PCLT)与脓毒症分发的血管内凝血凝血凝血凝结患者在STM治疗前后的血管凝集患者的血浆中的血浆(TPA-PCLT)的变化。在重组STM(RSTM)处理后(PRE)之前(前)和24小时,在不同时间和24小时获得血浆样品。(a)显示了等离子体STM水平。(b)在存在和不存在RSTM和活化的凝血酶活化的纤维结构抑制剂(TAFIA)抑制剂的情况下,TPA-PCLT(Th)。数据表示为重复数据的平均TPA-PCLT时间。开放圈:tpa-pclt(th);闭环:TPA-PCLT(TH) + RSTM;开放三角:TPA-PCLT(TH) + TAFIA抑制剂;闭合三角形:TPA-PCLT(TH) + RSTM + TAFIA抑制剂。
创新 45 多年来,我们一直致力于创新,我们高度重视客户定制系统,结合我们全面的实验室和测试能力,可以快速开发、定制和开发数据库。我们在热固性和热塑性树脂、各种复合纤维和零件设计方面的经验使我们能够快速创新以满足客户需求。我们因提供优化的纤维和树脂解决方案而受到业界认可,我们向市场提供先进的以客户为导向的产品。
通过胃肠道中的微生物与肠道轴沿肠道轴的大脑之间的通信来操纵大脑功能的能力已成为改善认知和情感健康的潜在选择。饮食组成和模式表明,可以调节微甲状腺轴轴的强大能力。具有具有前,亲,后和合成特性的潜力,饮食纤维和发酵食品作为肠道菌群的有效形状以及随后向大脑的信号传递而脱颖而出。尽管有潜力,但很少有研究直接研究了可能解释饮食纤维和发酵食品对微生物群轴轴的有益作用的机制,从而限制了脑功能障碍的见解和治疗方法。在此,我们评估了全食物源对认知和情感功能的饮食纤维和发酵食品的差异影响。描述了通过微生物群脑轴对饮食纤维和发酵食品对大脑健康的潜在介导作用。尽管需要进行心理评估和生物学样本以比较每种食物类型的更多多模式研究,但迄今为止积累的证据表明,饮食纤维,发酵食品和/或它们在心理饮食中的组合可能是一种成本效益,可以是一种成本效益,方便的方法,可改善整个Lifespan的认知和情感功能。
简介 牙周炎是一种慢性牙周炎症,由致病菌与其他危险因素共同引起。糖尿病与牙周炎呈负相关,是全球重大的健康问题(Preshaw 和 Bissett,2019 年;Kim 和 Amar,2006 年)。牙周病会引发逐渐的、不可逆的炎症反应,从而破坏组织。与牙菌斑生物膜中存在的细菌菌群相反,局部组织和免疫细胞会产生促炎细胞因子,导致牙周组织损伤(Ebersole 等人,2013 年)。代谢紊乱糖尿病 (DM) 的特征是胰岛素分泌不足、胰岛素无效或两者兼而有之引起的高血糖症。牙周组织也是受 DM 影响的众多身体器官之一。这两种情况都会对牙周组织产生负面影响,
抽象的黑色士兵蝇(BSF)幼虫一直是在鱼类和家禽粉中使用的有前途的蛋白质来源,可有效替代植物性蛋白质来源。目前,尚无乳酸细菌发酵竹子的影响以改善BSF幼虫的营养。这项研究的主要目的是确定蛋白质:富含乳酸菌细菌的发酵竹头膜纤维(Bambusa beecheyana)的BSF幼虫的脂肪比和生长速率。lactobacillus plantarum和Brevibacillus parabrevis,并成功地进行了21天。我们的结果表明,与仅由BSF幼虫与蔬菜废物组成相比,与发酵的竹制纤维纤维和发酵竹纤维纤维纤维和植物废物混合的植物veg217(1:1)与发酵的竹制纤维纤维和植物废物混合的平均体重(111%)和长度(30%)组成。有趣的是,与阴性对照(18天)相比,富含乳酸细菌的发酵竹子的BSF幼虫在短时间内(少于13天)也会pub养。所有用发酵竹和乳酸菌喂养的幼虫也