本文介绍了 IBM 量子计算机中利用可逆逻辑门设计快速高效乘法器的方法。为了设计乘法器,设计了高效的二进制半加器和全加器用于加法过程。这些设计的实现和仿真是在 IBM 建立的云应用程序上完成的。这些设计针对不同输入的结果以图表的形式显示,显示了概率。与任何软件中的模拟输出相比,输出速度都非常快。最后,结果证实,所提出的加法器和乘法器设计降低了复杂性,输出高效,且不影响延迟。
摘要:人工智能 (AI) 和认知计算 (CC) 是不同的,这就是为什么每种技术都有其优点和缺点,这取决于企业想要优化的任务/操作。如今,只需将 CC 与 AI 的广泛主题联系起来,就很容易混淆两者。这样,想要实施 AI 的公司就知道,在大多数情况下,他们想要的是 CC 提供的功能。在这些情况下,知道如何区分它们很重要,这样就可以确定在哪种情况下一种比另一种更合适,从而更多地利用每种技术提供的优势。该项目专注于突出这两种技术的能力,更具体地说是在智能系统实施和公司对它们的兴趣有利的商业环境中。它还确定了这些技术的哪些方面对公司最有吸引力。根据这些信息,评估这些方面是否与决策相关。数据分析是通过采用偏最小二乘结构方程模型 (PLS-SEM) 和描述性统计技术进行的。
摘要典型相关分析 (CCA) 和偏最小二乘 (PLS) 是用于捕捉两种数据模态(例如大脑和行为)之间关联的强大多元方法。然而,当样本量类似于或小于数据中的变量数量时,标准 CCA 和 PLS 模型可能会过度拟合,即发现无法很好地推广到新数据的虚假关联。已经提出了 CCA 和 PLS 的降维和正则化扩展来解决此问题,但大多数使用这些方法的研究都有一些局限性。这项工作对最常见的 CCA/PLS 模型及其正则化变体进行了理论和实践介绍。我们研究了当样本量类似于或小于变量数量时标准 CCA 和 PLS 的局限性。我们讨论了降维和正则化技术如何解决这个问题,并解释了它们的主要优点和缺点。我们重点介绍了 CCA/PLS 分析框架的关键方面,包括优化模型的超参数和测试已识别的关联是否具有统计意义。我们将所描述的 CCA/PLS 模型应用于来自人类连接组计划和阿尔茨海默病神经成像计划的模拟数据和真实数据(n 均为 .500)。我们使用这些数据的低维和高维版本(即样本大小与变量之间的比率分别在 w 1 – 10 和 w 0.1 – 0.01 范围内)来展示数据维数对模型的影响。最后,我们总结了本教程的关键课程。
摘要:Shor 算法在多项式时间内解决了椭圆曲线离散对数问题 (ECDLP)。为了优化二进制椭圆曲线的 Shor 算法,降低二进制域乘法的成本至关重要,因为它是最昂贵的基本算法。在本文中,我们提出了用于二进制域 (F 2 n) 乘法的 Toffoli 门数优化的空间高效量子电路。为此,我们利用类 Karatsuba 公式并证明其应用可以在没有辅助量子位的情况下提供,并在 CNOT 门和深度方面对其进行了优化。基于类 Karatsuba 公式,我们驱动了一种空间高效的基于 CRT 的乘法,该乘法采用两种非原地乘法算法来降低 CNOT 门成本。我们的量子电路不使用辅助量子位,并且 TOF 门数极低,为 O ( n 2 log ∗ 2 n ),其中 log ∗ 2 是一个增长非常缓慢的迭代对数函数。与最近基于 Karatsuba 的空间高效量子电路相比,我们的电路仅需要 Toffoli 门数的 (12 ∼ 24%),且加密字段大小 ( n = 233 ∼ 571 ) 具有可比深度。据我们所知,这是第一个在量子电路中使用类似 Karatsuba 的公式和基于 CRT 的乘法的结果。
乘法累加器 (MAC) 单元执行两个数字相乘的运算,并将结果反复累加到寄存器中,以执行连续而复杂的运算。MAC 可以加快计算过程。它在数字信号处理中有着广泛的应用,包括滤波和卷积。MAC 在音频和视频信号处理、人工智能 (AI)、机器学习、军事和国防 [1] 中也有广泛的应用。由于这些运算需要循环应用乘法和加法,因此执行速度取决于 MAC 单元的整体性能 [2]。使用 MAC 单元可以提高准确性,还可以减少计算点积、矩阵乘法、人工神经网络和各种数学计算的时间延迟。
摘要:乘法器在数字信号处理应用和专用集成电路中起着重要作用。华莱士树乘法器提供了一种具有面积高效策略的高速乘法过程。它使用全加器和半加器在硬件中实现。加法器的优化可以进一步提高乘法器的性能。提出了一种使用 NAND 门改进全加器的华莱士树乘法器,以实现减小的硅片面积、高速度和低功耗。用 NAND 门实现的改进全加器取代由 XOR、AND、OR 门实现的传统全加器。提出的华莱士树乘法器包含 544 个晶体管,而传统的华莱士树乘法器有 584 个晶体管用于 4 位乘法。
tmohanrao2020@gmail.com 摘要:乘法器在信号处理和基于 VLSI 的环境应用中起着关键作用,因为与其他设备相比,它消耗更多的功耗和面积。在实时应用中,功率和面积是重要参数。乘法器是必不可少的组件,因为与任何其他元件相比,它占用较大的面积并消耗更多的功耗。我们有很多加法器来设计乘法器。在本文中,使用金字塔加法器,它使用半加器和全加器来提高速度并减少乘法器中使用的门数量,但延迟并没有显着减少。如果我们用 XNOR 和 MUX 代替普通的半加器和全加器来修改金字塔加法器,那么与普通的 16 位加法器相比,这种金字塔加法器使用的门更少,延迟也更少。金字塔加法器中 XNOR 和 MUX 的使用减少了延迟,因为 MUX 功能仅在输入中选择输出。使用这种金字塔加法器可以大大减少乘法器延迟。关键词:MUX,FPGA,DSP,加法器,2.1块,2.2块
摘要 — 神经形态计算机提供了低功耗、高效计算的机会。虽然它们主要应用于神经网络任务,但也有机会利用神经形态计算机的固有特性(低功耗、大规模并行、共置处理和内存)来执行非神经网络任务。在这里,我们演示了一种在神经形态计算机上执行稀疏二进制矩阵向量乘法的方法。我们描述了这种方法,它依赖于二进制矩阵向量乘法和广度优先搜索之间的联系,并介绍了以神经形态方式执行此计算的算法。我们在模拟中验证了该方法。最后,我们讨论了该算法的运行时间,并讨论了未来神经形态计算机在执行此计算时可能具有计算优势的地方。索引术语 — 神经形态计算、图算法、矩阵向量乘法、脉冲神经网络
Google、IBM 等国际公司正在推进大规模量子计算机的研发。量子计算机在某些领域比经典计算机拥有更强大的计算能力,比如深度学习、化学、密码学等。如果研发出能够运行量子算法的大规模量子计算机,那么目前广泛使用的密码算法的安全性可能会降低甚至被突破。Shor 算法已经被证明可以突破 RSA 和椭圆曲线密码 (ECC) 的安全性。RSA 和 ECC 能够使用多久取决于量子计算机的发展和 Shor 算法的优化 [1]。在 [2] 中,作者估计对于 n 位密钥的 RSA,Shor 算法可以应用 2 n + 2 个量子比特。Gidney 估计了改进的 2 n + 1 个量子比特的数量 [3]。Shor 算法也可以应用于椭圆曲线中的离散对数 (即 ECC)。在 [4] 中,作者通过估算解决椭圆曲线离散对数所需的量子资源,指出 ECC 比 RSA 更容易受到量子计算机的攻击。在 [5] 中,作者证明了