目的 面对温室效应导致的气体排放增加和化石燃料枯竭,需要采用对环境影响小且促进可再生能源的技术来满足能源需求。最近有报道称,磁加热激活的 CO 2 甲烷化是一种高效创新的电转气技术,可以成功储存可再生能源并增值二氧化碳。在这项工作中,我们对该过程进行了生命周期评估 (LCA),以突出该技术的环境潜力及其与传统加热技术的竞争力。方法 本 LCA 使用 IMPACT 2002+。所研究的过程集成了甲烷化、水电解和 CO 2 捕获与分离。这项“从摇篮到大门”的 LCA 研究不考虑反应产物甲烷的使用。使用的功能单元是产生的 CH.i 的能量含量。 LCA 是使用法国环境与能源管理局 (AD EME) 提供的 2020 年和 2050 年的能源结构数据进行的。消耗数据要么来自文献,要么从 Marbaix (2019) 讨论的 LPCNO 测量中获得。将磁加热激活的 CO 2 甲烷化对环境的影响与使用传统加热 (Helmeth) 并考虑天然气开采对环境影响的电转气厂对环境的影响进行了比较。结果表明,反应物的总流速、CO 2 来源和能源结构对可持续 CH 4 生产的环境影响起着重要作用,而所考虑的催化剂的寿命没有显著影响。由于上述参数可能得到改进,预计到 2050 年,整个过程对环境的影响将减少 75%。这表明,当与工业废气和可再生电力生产相结合时,磁加热激活的甲烷化具有很高的环境潜力。结论与现有的使用外部加热源的类似工艺相比,该技术预计在环境方面具有竞争力,并且具有极强的响应动态性,符合可再生能源生产的间歇性。
索邦大学,CNRS,UMR 7621,微生物eanography实验室,Banyuls的愉悦观察者,F-666650 Banyuls-Sur-Sur-Mer,法国B SAS Plastic@Sea,OC SEA,OC oc'an Anological Obistration,Banyuls的Anological Obiservatory,Banyuls of Banyuls,F-666650,F-66650,F-66650,F-66650,F-66650,F-66650 F-66650 Banyuls-sur-Mer,法国,Genoscope,Genoscope,InstitutFrançoisJacob,CEA,CNR,CNRS,Univ Evry,Univers Paris-Saclay,F-91057 Evry,法国E,Toulouse E Universe of Toulouse,Toulouse,CNRS,CNR,UMR 5623,UMR 5623,摩尔(Moli)互动(ecloriation and Moli cocrionity and copliential and cothiolition and cothiolition and craporiation and cripation and cripation and cription and c。 F-31000 Toulouse,法国F Sorbonne University,CNRS,UMR 8222,底栖环境的Eochimia实验室,Oc'Es'Sanologique Banyuls of Banyuls,F-666650 Banyuls-Sur-Sur-Sur-Sur-Sur-Sur-法国,法国
5。自2021年以来,进行了小规模的站点实验,对涉及地热井开挖的现场实验进行了准备(以下是“大规模站点实验”),因为有必要彻底评估诸如诱导地震和CO2的实验的风险,而在诱导的地震中泄漏了一些漏洞,并且在其他方面进行了研究22。目前,正在为实施计划于2025财政年度的小规模现场实验的实施做准备。
二氧化碳在全球温度循环中发挥的关键作用引发了人们对碳捕获和储存的持续研究关注。在众多选择中,锂-二氧化碳电池最引人注目,因为它不仅可以将废弃的二氧化碳转化为增值产品,还可以储存可再生能源产生的电能并平衡碳循环。该系统的开发仍处于早期阶段,面临着二氧化碳引入带来的巨大障碍。本综述详细讨论了电极、界面和电解质面临的关键问题,以及解决这些问题所需的合理策略,以实现高效的二氧化碳固定和转化。我们希望本综述能为全面了解锂-二氧化碳电池提供资源,并为未来探索可逆和可充电的碱金属二氧化碳电池系统提供指导。
Binder content ( B ) [kg/m 3 ] 303 321 361 344 313 413 Binder content ( b ) [wt.%] 12.5 13.2 14.8 14.3 12.9 16.9 Clinker content in binder ( c [wt.%] 95 73 15 67 67 24 Clinker content in concrete [wt.%] 11.9 9.6 2.2 9.6 8.6 4.1 CaO content在Binder(CAO)[wt。%] 64.8 48.9 45.1 46.9 57.8 47.3混凝土中的CAO含量[wt。%] 8.1 6.5 6.5 6.7 6.7 6.7 6.7 7.5 8.0 8.0
使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
氧气通过在呼吸过程中加速电子的转移来帮助生物产生能量。由于呼吸,微生物和海床的土壤动物自然释放二氧化碳。在有许多动物和有机碳的栖息地中,您通常具有海床的总呼吸(动物 +细菌)和高CO 2排放/排放。这种排放量最高,在海底的上层中,氧气大量存在,并且较高的温度加快了溶解的速度。在富含有机物质的细小沉积物中,氧气通常仅穿透表面下的1 mm。没有氧气,某些微生物仍然可以破坏有机碳,但是该过程要慢得多。如果干扰将有机碳暴露于氧气中,它将更快地分解为Co 2。
图 1:(a) 带有水深测量的模型域地图。白线表示陆架断层的位置,定义为 200 米等深线,北部和南部边界处有闸门。红十字表示闸门的起点。SH:设得兰群岛,NT:挪威海沟,SK:斯卡格拉克海峡,NS:北海,GB:德国湾,SB:南湾。(b) 模型水平分辨率地图,叠加了 2001-2010 年期间模型模拟的平均电流场。地图限制为 100
摘要。从CO 2柱平均干摩尔分数(XCO 2)的Spaceborn图像中估算城市CO 2发射的兴趣越来越大。排放估计方法已被广泛测试并应用于实际或合成图像。但是,仍然缺乏选择值得处理的图像的客观标准。这项研究分析了一种自动化方法的性能,用于估计城市排放作为目标城市和大气条件的函数。,它使用具有合成真理的合成数据和9920 XCO 2的合成卫星图像在全球最大的31个城市中,由全球自适应网格模型,海洋 - 陆地 - 大气模型(OLAM)产生,在这些城市高度重大的城市中放大。我们使用一种应用于这种合成图像集合的决策树学习方法根据这些发射和大气条件来定义标准,以选择合适的卫星图像。我们表明,基于高斯羽流模型的发射估计方法的自动化方法设法估算了92%的合成图像。我们的学习方法确定了两个标准,即风向的空间可变性和目标城市的排放预算,这些预算折磨了其处理的图像,其处理可得出合理的发射估计,从而从那些处理产生大量的估计。图像对应于风向低空间可变性(小于12°)和高城市排放(大于2.1 kt co 2 H-1)的图像占图像的47%,并且其处理的相对误差在发射范围内产生了相对误差,中位数为-7%,二级分支范围