摘要。从CO 2柱平均干摩尔分数(XCO 2)的Spaceborn图像中估算城市CO 2发射的兴趣越来越大。排放估计方法已被广泛测试并应用于实际或合成图像。但是,仍然缺乏选择值得处理的图像的客观标准。这项研究分析了一种自动化方法的性能,用于估计城市排放作为目标城市和大气条件的函数。,它使用具有合成真理的合成数据和9920 XCO 2的合成卫星图像在全球最大的31个城市中,由全球自适应网格模型,海洋 - 陆地 - 大气模型(OLAM)产生,在这些城市高度重大的城市中放大。我们使用一种应用于这种合成图像集合的决策树学习方法根据这些发射和大气条件来定义标准,以选择合适的卫星图像。我们表明,基于高斯羽流模型的发射估计方法的自动化方法设法估算了92%的合成图像。我们的学习方法确定了两个标准,即风向的空间可变性和目标城市的排放预算,这些预算折磨了其处理的图像,其处理可得出合理的发射估计,从而从那些处理产生大量的估计。图像对应于风向低空间可变性(小于12°)和高城市排放(大于2.1 kt co 2 H-1)的图像占图像的47%,并且其处理的相对误差在发射范围内产生了相对误差,中位数为-7%,二级分支范围
主要关键词