Cruise AV的标志是其安全的硬件传感器套件,在外部可见。传感器套件不会在外部共享信息,不会通过云数据处理来跟踪或以任何身份保留第三方。这种传感器阵列使Cruise AV能够收集有关其环境的信息并告知系统的驾驶决策。在AV的后备箱内是组成系统“大脑”的计算机,并迅速综合了硬件套件收集的信息,以通过感知(了解环境),预测(评估给定环境的可能的安全路径或轨迹)和控制驾驶(驾驶驾驶员)(评估可能的安全路径或轨迹)。有关巡航自主系统如何工作的更多信息,并在此处的2022 Cruise安全报告中提供了一个安全的驾驶员。
遗传因素在确定人身高方面起着至关重要的作用。矮小的身材通常会影响多个家庭成员,因此,家族性矮小的身材(FSS)代表了生长障碍的显着比例。传统上,FSS被认为是代表特发性短身材的子类别(ISS)的良性多基因条件。然而,遗传研究的进步表明,FSS也可以是单基因的,以常染色体显性方式遗传,并且可能是由不同的机制引起的,包括原发性板障碍,生长激素的发音/不敏感性或通过基本内细胞内途径的破坏。这些发现强调了较远的矮个地位形式的更广泛的表型光谱,这可能与ISS表现出轻度的表现。鉴于重叠的特征和在没有基因检测的情况下与单基因FSS区分多基因的难度,一些研究人员将其重新定义为描述性术语,该术语涵盖了任何家族性地位,无论其基本原因如何。这种转变强调了诊断和管理家庭内部矮小的身材的复杂性,反映了影响人类成长的各种遗传景观。
巡航起源配备了一个传感器套件,该套件由相机,雷达和雷达(Radars and LiDars)组成,在原点的外部可见。类似于螺栓,外部传感器阵列使Cruise Origin可以收集有关其环境的信息并为系统的驾驶决策提供信息。原点是一台计算机,该计算机包括系统的“大脑”。计算机及其冗余备份,旅行时乘客将看不到或无法访问。自主技术是通过迅速综合传感器套件收集的信息来通过感知(了解环境),预测和计划(评估给定环境的车辆可能的安全路径或轨迹)和控制措施(驱动器操作)来告知行为的工作。有关巡航起源系统如何工作的更多信息,并被设计为安全驱动程序,请在此处和我们的引擎盖介绍中提供的GM安全报告中提供。3,4
总结本文探讨了专注于互动性的艺术和技术领域的实践,尤其是互动艺术。 div>我们研究了与互动艺术相关的关键概念,例如互动者的作用,互动美学,娱乐性特征和关系架构师以及其他要素。 div>为此,我们考虑了莫里斯·贝纳诺(Maurice Benayoun),Studio azzurro,Marcel-líAntunezRoca和Rafael Lozano-Hemmer等艺术家的互动作品。 div>此外,我们质疑具有暂时的计算机技术,尤其是涉及人造轻度的计算机技术的定义。 div>我们试图通过促进互动概念及其对当前技术进步的反应来促进当前辩论的贡献,其响应于当前的技术进步,这些技术涵盖了一系列旨在模仿人类认知功能的系统。 div>最终,我们提供了有关互动艺术的观点,目的是有助于对艺术和技术中的互动性进行更广泛的了解,作为一种系统性,视觉,技术和美学体验。 div>
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
本文介绍了一种跨性别包容的人工智能立场,即“行动人工智能”(eAI)。人工智能设计是一种体现人类文化和价值观的人类社会文化实践。不具代表性的人工智能设计可能会导致社会边缘化。第 1 节借鉴激进的行动主义,概述了具体文化实践。第 2 节探讨了跨性别如何作为一种社会文化实践与技术科学交织在一起。第 3 节重点介绍了在人工智能中机器人与人类互动的具体情况下颠覆性别规范。最后,第 4 节确定了四个道德载体:可解释性、公平性、透明度和可审计性,以便在开发性别包容的人工智能时采取跨性别包容的立场,并颠覆机器人设计中现有的性别规范。
手势在人类和人类机器人相互作用中起着关键作用。在基于任务的上下文中,诸如指向之类的神性手势对于指导关注与任务相关的实体至关重要。虽然大多数基于任务的人类和人类手机Di-Alogue专注于封闭世界领域的工作,但重新研究已开始考虑开放世界任务,在这种任务中,与任务相关的对象可能不知道与先验者相互作用。在开放世界任务中,我们认为必须对手势进行更细微的考虑,因为交互者可以使用桥接传统手势类别的手势,以便浏览其任务环境的开放世界维度。在这项工作中,我们探讨了在开放世界任务上下文中使用的手势类型及其使用频率。我们的结果表明需要重新考虑在人类和人类机器人相互作用的研究中进行手势分析的方式。
全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速