Buruli溃疡(BU)疾病是由分枝杆菌引起的被忽视的坏死性皮肤感染,是仅次于结核病和麻风病的第三种最常见的分枝杆菌疾病。感染主要发生在中非和西非的偏远,农村地区,也出现在澳大利亚,日本和巴布亚新几内亚。目前尚无针对Buruli溃疡疾病的疫苗,并且以前使用密切相关的细菌和亚基蛋白的所有尝试仅在部分成功。在这里,我们在小鼠中测试了一种复合亚基配方,该配方掺入了溃疡性分枝杆菌毒素霉菌乳元作为免疫调节剂,以及抗原AG85A和Polyketide Sythase酶酶A(KRA),用Quil-A辅助(KRA)形成。burulivac诱导了AG85A和KRA抗原特异性抗体,T细胞以及混合促疾病和抗炎的细胞因子反应,在14周的观察期间,在小鼠FOOTPAD模型中赋予了针对Buruli ulcer病的绝对保护。这两个都优于活体细菌疫苗,即BCG和缺乏霉菌性毒素(MUδ)的无毒的溃疡菌株。白介素10与保护密切相关。我们建议Burulivac是一名有前途的疫苗候选者,以抵抗Buruli溃疡疾病,需要进一步探索。
自2019年底SARS-COV-2首次感染了人类以来,Covid-19的大流行就已经破坏了健康和经济影响。迄今为止,Covid-19在全球造成了超过350万人的死亡,仅在美国就有超过580 000人死亡。 [1]尽管行为和接触跟踪干预措施减慢了扩散,并且在某些地区可以使用疫苗,但在世界许多地区,病例数仍然很高。 在资源有限和获得医疗保健的地区,SARS-COV-2的持续传播将继续存在明显的有害。 无症状的传播率很高,缺乏有效的治疗使该病毒难以固定。 [2]因此,有效疫苗的部署是结束COVID-19-19大流行的关键全球健康优先事项。 此外,Covid-19还迫使开发疫苗平台的重要性,这些疫苗平台可以迅速适应以应对未来的大流行。迄今为止,Covid-19在全球造成了超过350万人的死亡,仅在美国就有超过580 000人死亡。[1]尽管行为和接触跟踪干预措施减慢了扩散,并且在某些地区可以使用疫苗,但在世界许多地区,病例数仍然很高。在资源有限和获得医疗保健的地区,SARS-COV-2的持续传播将继续存在明显的有害。无症状的传播率很高,缺乏有效的治疗使该病毒难以固定。 [2]因此,有效疫苗的部署是结束COVID-19-19大流行的关键全球健康优先事项。 此外,Covid-19还迫使开发疫苗平台的重要性,这些疫苗平台可以迅速适应以应对未来的大流行。无症状的传播率很高,缺乏有效的治疗使该病毒难以固定。[2]因此,有效疫苗的部署是结束COVID-19-19大流行的关键全球健康优先事项。此外,Covid-19还迫使开发疫苗平台的重要性,这些疫苗平台可以迅速适应以应对未来的大流行。
摘要我们先前已经描述了在成年爪诺司纳布斯Laevis神经系统中仅表达的几个基因的分离,并在神经诱导后不久在胚胎中激活。这些cDNA的一个24-15的序列将相应的蛋白质识别为(Na',K+-ATPase的3个亚基[ATP磷酸化水酶(Na+/ K+-transporting); EC 3.6.1.37]。这种形式与先前所描述的(31个爪蟾亚基)不同,蛋白质序列比较表明它不是哺乳动物的青蛙同源物(82个亚基;因此,我们将24-15蛋白称为(na',na',k+-Atpase的33个亚基。抗血清针对(83个亚基融合蛋白检测到成人脑提取物中的蛋白质,其大小和特性是Na',K+-ATPase(3个亚基。在Xenopus中(31和33个亚基表示为相似水平的母体mRNA;在胚胎发生期间快速积累(33个mRNA在第14阶段开始(早期神经拉拉),快速积累(31个mRNA在阶段开始,在23/24阶段。反义RNA探针与t骨脑切片的原位杂交表明(33个亚基在整个发育中的大脑中表达。我们建议(33是主要的Na',K+-ATPase(在青蛙早期神经系统发育过程中存在8个亚基。
减轻疟疾和相关死亡的负担受到了疟疾寄生虫能够发展对市场上所有可用疗法的抵抗力的能力的阻碍(Antony和Parija,2016年)。因此,了解寄生虫获得对抗疟药的耐药性的机制对于未来替代有效治疗的发展至关重要。如今,阿耳震蛋白及其衍生物(Arts)是推荐的治疗方法,以及长期伴侣,形成基于青蒿素的联合疗法(ACTS)。artemisin抗性,主要由环阶段存活测定法(RSA)定义,经常与K13蛋白中的突变有关,而K13蛋白不调节蛋白酶体的活性(Wicht等,2020)。然而,使用蛋白酶体抑制剂(例如环氧素)会增加抗性和敏感寄生虫中的青蒿素活性(Bozdech等,2015)。在该帐户中,泛素 - 蛋白酶体途径(UPP)的不同部分的突变可能会影响阿甘辛蛋白的反应(Bridgford等,2018)。最近的研究表明,19S和20S的蛋白酶体亚基的突变敏化K13 C580Y寄生虫,这是基于RSA的更大湄公河区域中最普遍的青蒿素耐药性突变,基于RSA(Rosenthal和Ng,2021; Rossenthal和Ng,20223)。此外,在编码非素化酶UBP-1的基因中的两个突变在抗甲半氨着这甲蛋白蛋白的抗chabaudi P. chabaudi寄生虫中被鉴定出来,并且证明它们可以介导恶性疟原虫中的艺术耐药性(Cravo,2022222)。后者负责底物的识别,去泛素化,展开和易位。泛素 - 蛋白酶体系统对于真核细胞至关重要,因为它负责蛋白质的降解或回收利用,侵蚀了几个细胞过程,包括细胞周期,转录调节,细胞应激反应,信号转导,信号转导,和细胞曲折(Wang et al。,2015年)。这种蛋白质调节对于在两个宿主之间的生命周期进程中发生的疟疾寄生虫经历的快速转化至关重要,尤其是在复制率高的阶段(Krishnan和Williamson,2018年)。UPP涉及一种称为泛素化的蛋白质后修饰过程,该过程将多泛素链连接到随后由26S蛋白酶体识别的蛋白质上。如果蛋白质被蛋白质组恢复或降解,则泛素化定义的类型(Aminake等,2012; Wang等,2015)。26S蛋白酶体是一种枪管形的多亚基蛋白酶复合物,分为20S核心颗粒(CP)和19S调节粒子(RP)。20S核心通过肽基戊酰基肽水解(PGDH)(caspase样),类似胰蛋白酶样和类似chymotrypsin的活性负责蛋白水解,分别遇到了三种B-亚基(B1,B2和B5)(分别为Wang et al。,2015年)。这些催化活性的亚基分别使用N末端苏氨酸作为酸性,胰蛋白酶和疏水残基的羧基末端后的亲核试剂和裂解。这些活动站点
通过N-甲基 - D-天冬氨酸受体(NMDARS)信号对于谷氨酸能突触的成熟至关重要,部分是通过表达主要表达Glun2B-和Glun3a含Glun3a的不成熟突触的发育转换,从而获得了含Glun3a的含量,从而涉及含Glun2a的含量。这种亚基开关被认为是神经网络巩固所需的NMDAR的突触稳定的基础。但是,控制NMDAR交换的细胞机制尚不清楚。使用单分子和共聚焦成像以及生化和电生理方法的组合,我们表明表面glun3a-nmdars形成了一个高度扩散的受体池,它松散地固定在突触上。值得注意的是,glun3a亚基表达的变化选择性地改变了glun2a-的表面扩散和突触锚定,但不能通过改变与细胞表面受体的相互作用来改变glun2b-nmdars。Glun3a对NMDAR表面扩散的影响仅限于啮齿动物产后发育的早期窗口,从而允许Glun3A亚基控制NMDAR信号成熟和神经元网络重新构造的时间。
当 G 蛋白被气味受体激活时,α 亚基中的 GDP 被鸟苷三磷酸 (GTf) 取代。此过程导致 α 亚基与 β 和 γ 亚基分离。释放的 α 亚基现在与酶 -腺苷酸环化酶 (AC) 结合并激活该酶。酶活化过程将 GTP 水解为 GDP。然后 α 亚基与 β 和 γ 亚基重新结合,使 G 蛋白恢复到静止状态。活化的酶将腺苷三磷酸 (ATP) 环化为环-3'-5'-腺苷单磷酸 (cAMP),后者充当细胞内激素(通常称为“第二信使”)。细胞内 cAMP 浓度急剧增加,从而激活(打开)细胞膜上的门控离子蛋白通道。打开的通道允许细胞外无机离子(Ca++)流入燃料电池,导致其极化。细胞因氯离子流而去极化,这种全细胞电流是气味接收信号的来源,该信号通过轴突传送到嗅球[7]。我
纤维化与杜氏肌营养不良症 (DMD) 中的肌肉功能受损有关。我们报告了对营养不良患者和小鼠组织的观察结果,支持一种解释 DMD 中纤维化的模型,该模型依赖于补体和 WNT 信号通路之间的串扰以及两种细胞类型的功能相互作用。纤维脂肪形成祖细胞和巨噬细胞在发炎的营养不良肌肉中繁殖,通过分泌 C 1 补体复合物的不同亚基充当 WNT 活性的组合源。反应性细胞(如纤维脂肪形成祖细胞)中 WNT 信号的异常激活会导致纤维化。事实上,在 DMD 小鼠模型中,药物抑制 C 1 r/s 亚基可减轻 WNT 信号通路的激活,降低纤维脂肪祖细胞的纤维化特征,并改善营养不良表型。这些研究为肌营养不良症纤维化的分子和细胞机制提供了新的见解,并为新的治疗策略开辟了道路。
哺乳动物先天免疫反应具有称为“受过训练的免疫力”的一种记忆力(1)。训练免疫在疫苗功效中发挥的作用仍然未知。然而,受过训练的免疫力介导活衰减疫苗的非特异性保护作用,例如BCG疫苗对结核病的疫苗(2-5),已知可降低婴儿的全因死亡率(6-9)。发生这种情况是因为疫苗会诱导单核细胞的表观遗传和代谢重新布线,这使它们在随后刺激时会以增强的方式响应(2、3、10)。重要的是,这种作用超出了疫苗接种后的免疫激活的短时间框架,并且归因于骨髓造血干细胞壁细胞的变化,这导致粒细胞增强和髓样细胞的增强,这些细胞表现出表观遗传和代谢为训练的免疫疗法(5,11)。在COVID-19疫苗的随机临床试验中的比较表明,与基于mRNA的疫苗相比,基于腺病毒载体的疫苗可能具有非特异性保护作用,从而显着降低了全因死亡率和非covi剂,非促疾病的死亡率(12)。
尽管已开发出多种疫苗来遏制严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 在人类中的传播,但为动物(包括宠物)开发的疫苗却非常少。为了对抗人与动物、动物与动物和动物与人之间传播的威胁以及新的病毒变种的产生,我们开发了一种亚单位 SARS-CoV-2 疫苗,该疫苗基于在昆虫细胞中表达的重组刺突蛋白胞外结构域,然后与适当的佐剂配制而成。将 16 只 8–12 周龄的杂交雌性和雄性小猫(每组 n = 4)随机分为四个治疗组:仅刺突蛋白;刺突加 ESSAI 水包油 (O/W) 1849102 佐剂;刺突加氢氧化铝佐剂;和 PBS 对照。所有动物均间隔 2 周肌肉注射两次疫苗,每次注射 5 µ g 刺突蛋白,体积为 0.5 ml。在第 0 天和第 28 天,采集血清样本以评估抗刺突 IgG、抗体对刺突与血管紧张素转换酶 2 (ACE-2) 结合的抑制、针对野生型和 delta 变异病毒的中和抗体以及血液学研究。在第 28 天,所有组均通过鼻内方式接种 SARS-CoV-2 野生型病毒 10 6 TCID 50。在第 31 天,采集组织样本(肺、心脏和鼻甲)进行病毒 RNA 检测和病毒滴度测定。两次免疫后,两种疫苗均诱导高滴度血清抗刺突 IgG,可抑制刺突 ACE-2 结合并中和野生型和 delta 变异病毒。两种佐剂疫苗配方均能保护幼猫免受上呼吸道病毒的排出以及下呼吸道和心脏病毒的复制。这些令人鼓舞的数据值得继续评估疫苗保护猫免受 SARS-CoV-2 感染的能力,特别是防止传播的能力。