摘要:机载地面穿透雷达系统提供了一种安全且效率的方法,可在挑战性地形中测量雪深和积雪地层,并具有潜在的雪崩危险。雪花龙是一种定制的雪测量系统,其中包含一个未螺旋的航空车辆(UAV)平台和雷达有效载荷。专门设计用于在各种雪覆盖场景上进行雪调查,该系统具有针对此类任务的性能属性。在这里,我们介绍了完整系统的技术实施,再加上在Svalbard上进行的三个广泛的现场活动的验证结果。此外,我们还提供了对雪地无人机获得的雪地层测量结果的见解,并原位获得了雪轮剖分以进行比较分析。通过将雷达观测值与1673的共同位置测量降雪深度相关联,范围从5到200 cm,并揭示了高度的一致性,从而产生了r = 0.938的相关系数。雪花源是可靠有效的工具,可在坡度范围内协助当地的雪崩危险评估,其中有关积雪深度和结构的信息至关重要。
1. 部署“死神”无人机和反无人机雷达进行定位和跟踪:海关和边境保护局 (CBP) 拥有一支 MQ-9“死神”无人机机队,这种无人机具有电光/红外 (EO/IR) 功能,可在各种环境中跟踪目标。在适当的情况下,协调机构还应使用反无人机雷达系统,该系统可以在发射地点准确探测无人机——无论这些系统是联邦、商业、州还是地方运营的。海关和边境保护局隶属于国土安全部,需要与非边境执法机构协调,在其正常职责范围之外开展行动。考虑到这一点,目前正在领导无人机入侵调查的联邦调查局应立即正式请求使用所需数量的海关和边境保护局 MQ-9“死神”无人机,与国土安全部协调,以跟踪这些无人机并确定其来源地。在使用“死神”无人机追踪不明无人机时,联邦合作伙伴应直接与新泽西州执法机构协调,以便迅速对无人机着陆地点做出反应。
并行和分布式处理的可用性、合理的成本以及数据源的多样性促进了人工智能(AI)的先进发展。人工智能计算环境的发展并不随着社会、法律和政治环境的变化而变化。在考虑部署人工智能时,部署背景以及针对该特定环境的人类智能增强的最终目标已经成为专业、组织和社会的重要因素。在本研究评论中,我们重点介绍了人工智能系统近期发展的一些重要社会技术方面。我们详细阐述了构成增强智能基础的人机交互的复杂性。我们还强调了与这些互动有关的伦理考虑,并解释了增强智能如何在塑造人类工作的未来方面发挥关键作用。
本文介绍了一种跨性别包容的人工智能立场,即“行动人工智能”(eAI)。人工智能设计是一种体现人类文化和价值观的人类社会文化实践。不具代表性的人工智能设计可能会导致社会边缘化。第 1 节借鉴激进的行动主义,概述了具体文化实践。第 2 节探讨了跨性别如何作为一种社会文化实践与技术科学交织在一起。第 3 节重点介绍了在人工智能中机器人与人类互动的具体情况下颠覆性别规范。最后,第 4 节确定了四个道德载体:可解释性、公平性、透明度和可审计性,以便在开发性别包容的人工智能时采取跨性别包容的立场,并颠覆机器人设计中现有的性别规范。
当算法和人类都无法在给定上下文中的所有实例中发挥主导作用时,人机互补性就很重要。最近探索人机协作的研究考虑了与分类任务相对应的决策。然而,在许多人类可以从人工智能互补性中受益的重要情况下,人类会采取行动。在本文中,我们提出了一种新颖的人机协作框架,用于选择有利的行动方案,我们将其称为人机团队的学习互补政策 (LCP - HAI)。我们的解决方案旨在利用人机互补性来最大化决策奖励,通过学习旨在补充人类的算法策略,通过使用路由模型将决策推迟给人类或人工智能以利用由此产生的互补性。然后,我们扩展了我们的方法来利用机会并降低实践中重要情况下出现的风险:1)当一个团队由多个具有差异和潜在互补能力的人组成时,2)当观察数据包括一致的确定性动作时,3)当未来决策的协变量分布与历史数据不同时。我们使用真实人类反应和半合成数据证明了我们提出的方法的有效性,并发现我们的方法在各种设置下都提供了可靠且有利的性能,并且优于算法或人工智能自己做出决策时。我们还发现,我们提出的扩展有效地提高了人机协作性能在不同挑战性设置下的稳健性。
摘要。尽管即使是非常先进的人工系统也无法满足人类成为社会互动适当参与者所需的苛刻条件,但我们认为并非所有人机交互 (HMI) 都可以适当地简化为单纯的工具使用。通过批评标准意向性主体解释的过于苛刻的条件,我们建议采用一种最小方法,将最小主体归因于某些人工系统,从而提出将采取最小联合行动作为社会 HMI 的案例。在分析此类 HMI 时,我们利用了丹尼特的立场认识论,并认为出于多种原因,采取意向性立场或设计立场可能会产生误导,因此我们建议引入一种能够捕捉社会 HMI 的新立场——人工智能立场。
必须强调整个系统中人与机器的能力之间的差异——人与机器都可以被视为具有巨大但非无限智能的复杂系统;机器的控制性能快速且可重复,而人的控制性能缓慢且多变;两者在压力下都容易发生故障;人的决策能力缓慢但灵活,机器的反应迅速但受到其可容纳程序范围的限制。发展的
但当错误决策的潜在后果很严重时,就需要更强的态势感知能力。在这种情况下,人类可以充当哨兵,依靠他们的经验来管理风险情况。虽然算法可能擅长识别定义不明确的过程,但也可能需要有经验的人来训练人工智能系统,担任教练的角色。在复杂程度和风险程度很高的情况下,人机交互的需求将达到顶峰,成为一种相互学习的关系。在这种情况下,人类专家是长期、点对点关系中的同伴。
这些职位位于弗吉尼亚州弗吉尼亚海滩,属于 CNO 优先级 1、类型 2 SEA 职责岗位。这些职位中的许多都支持研究、开发、测试和评估工作,以确定国防部、国防部和新南威尔士州是否适合使用。
摘要 - 在过去的十年中,使用自动无人机系统进行测量,搜救或最后一英里的交付呈指数增长。随着这些应用的兴起,需要在复杂和不确定的环境中运行无人机的高度稳健,关键算法。此外,快速快速使无人机能够覆盖更多的地面,提高生产率并进一步增强其用例。一个用于开发高速导航中使用的算法的代理是自动无人机赛车的任务,研究人员将无人机计划无人机通过一系列大门,并尽快避免使用板载传感器和有限的计算能力。速度和加速度分别超过80 kph和4 g,在整个感知,计划,控制和国家估计中提出了重大挑战。为了达到最高性能,系统需要实时算法,这些算法对运动模糊,高动态范围,模型不确定性,空气动力学干扰以及通常无法预测的对手。该调查涵盖了自主无人机在基于模型和基于学习的方法中竞争的进展。我们提供了多年来的领域,其发展的概述,并以将来面临的最大挑战和开放性问题得出结论。
