有机场效应晶体管 (OFET) 是有机电子电路的核心单元之一,OFET 的性能在很大程度上取决于其介电层的特性。有机聚合物,如聚乙烯醇 (PVA),由于其固有的柔韧性和与其他有机成分的天然兼容性,已成为 OFET 备受关注的介电材料。然而,诸如滞后、高亚阈值摆幅和低有效载流子迁移率等不尽人意的问题仍然大大限制了聚合物介电 OFET 在高速、低压柔性有机电路中的实际应用。这项工作开发了一种使用超临界 CO 2 流体 (SCCO 2 ) 处理 PVA 介电体的新方法,以获得性能卓越的聚合物介电 OFET。 SCCO 2 处理可以完全消除 OFET 传输特性中的滞后现象,同时还可以显著降低器件亚阈值斜率至 0.25 V/dec,并将饱和区载流子迁移率提高至 30.2 cm 2 V − 1 s − 1 ,这两个数字对于柔性聚合物电介质 OFET 来说都是非常可观的。进一步证明,与有机发光二极管 (OLED) 耦合后,SCCO 2 处理的 OFET 能够在快速开关速度下运行良好,这表明通过这种 SCCO 2 方法可以实现聚合物电介质 OFET 的优异开关行为。考虑到 OFET 的广泛和重要应用,我们预见这种 SCCO 2 技术将在有机电子领域具有非常广泛的应用,尤其是对于高刷新率和低压柔性显示设备。
石墨烯是一种二维材料,以其出色的电子特性而闻名。然而,为了在实际设备中利用这些特性,必须大大减少与基板和任何周围材料的电子耦合。六方氮化硼 (hBN) 是另一种二维材料,在这方面非常有前景。它既可用于将石墨烯与基板隔离,也可用于作为栅极介电材料。虽然通过机械剥离和转移获得的设备确实证实了石墨烯/hBN 异质结构的强大潜力,但可扩展且可靠的生长技术仍有待证明:开发制造二维异质结构的新方法非常重要。通过结合项目合作伙伴的专业知识和资源,拟议研究的目的是探索和开发在与 Si 微电子兼容的基板上制造石墨烯/hBN 异质结构的各种方法。为了实现这些目标,石墨烯/hBN 异质结构将通过两种主要方法生长:分子束外延和化学气相沉积。该项目过程中开发的特定成核增强横向图案化技术可能会改善该工艺。将应用先进的显微镜和光谱技术来提供有关薄膜形态、晶体学、化学和电学特性的信息。将通过从头算密度泛函理论进行原子计算,并辅以大规模动力学蒙特卡罗模拟,以了解生长机制和最佳工艺条件。
暴露于超短脉冲激光器(UPL)的聚合物(UPL)经历了一系列物理和化学变化,这些变化在从材料加工到高级光子学和生物医学的应用中起着关键作用。为了阐明UPL与聚合物材料的相互作用,假设聚碳酸酯(PC)是暴露于中等能量的激光脉冲的测试材料,则研究了超快现象,例如载体动力学,重组和松弛。为介电材料开发的理论模型被扩展,以描述PC的未开发的激发和载体动力学,而femtsecond瞬时吸收光谱用于阐明材料的响应和超快动力学的演变。使用理论模型来解释实验测量结果表明,能量水平的存在促进了自我捕获的激子在传导和价带之间的自我转移的形成(低于传导带的2.4-2.8 eV)。它还可以预测电子播寿命(约110-150 fs),重组时间(约34 ps)和由于kerr效应而折射率的非线性部分(𝑛2值范围为1.1-1.5×10 -16 cm 2 /w)。此外,还强调了多光子辅助电离的主要特征,而还计算出光学崩溃阈值并发现等于2.55×10 12 W/cm 2。结果预计将支持旨在阐明强烈超短激光脉冲与聚合物材料相互作用的未来努力,这对于优化这些材料的制造过程至关重要。
金属有机骨架 (MOF) 是新兴的低 k 介电材料,可用于下一代微电子和电信设备。通过利用 MOF 普遍存在的介电响应并克服直流电导率和荧光方法的局限性,MOF 电介质可以用作具有高灵敏度和化学选择性的智能传感器。在此,我们研究了材料合成、施加的机械应力 (37-520 MPa)、变化的温度 (20-100 °C) 和客体封装对 HKUST-1 MOF 的频率相关介电响应 (4 Hz 至 1 MHz) 和交流电导率的影响。特别地,我们表明,在 HKUST-1(主体)中三乙胺 (NEt 3 ) 客体分子的限制产生了可通过机械、热和电扰动进行调节的 NEt 3 @HKUST-1 系统。在 10 kHz 至 1 MHz 的频率范围内,在 20 °C 时,我们表明客体封装系统的介电常数 (𝜀 ') 可以调整到 2.8 至 7.2 之间的值;在 100 °C 时,𝜀 ' 的范围甚至可以达到 3.1 至 9.5。相反,我们发现,在使用相同的操作参数时,多孔(无客体)HKUST-1 的介电可调性相对更有限(𝜀 ' = 2.8 至 4.9)。此外,客体分子在 HKUST-1 中的限制增强了粉末在压缩制粒应力下的机械弹性和屈服强度。总之,这些结果阐明了利用 MOF 中的主客体相互作用以及电热机械刺激来调节设计低 k 材料的精确介电响应的新潜力。
无线设备,尤其是移动通信如今非常流行且使用广泛。天线是其中非常重要的部分,它允许无线设备之间无需使用电缆进行数据传输。研究人员一直在尝试改进天线的一些技术特性,例如天线增益、带宽和辐射方向图。本研究设计了一种具有高增益和宽带辐射特性的悬浮贴片寄生天线。在设计的天线中,接地平面和辐射部分之间使用空气代替介电材料。通过在天线的馈电点和辐射部分之间设计阻抗匹配部分来获得高增益和宽带。在本研究中,设计的天线的工作带宽约为 1750-2550 MHz。然而,天线部分的尺寸可以根据波长改变以在 3.6 GHz 和 6 GHz 下工作。矩形阻抗匹配部分的两侧有导电梯形寄生元件。梯形部分和辐射元件之间的薄空气间隙有助于阻抗匹配。使用常用的商业 EM 仿真软件包 HFSS 设计、分析和仿真天线。介绍了天线的详细配置、模拟回波损耗、辐射方向图和增益图。还实现了具有 2GHz 中心频率的天线,并测量了回波损耗 (S11)。引用本文:I. Catalkaya,“用于无线应用的带寄生元件的宽带高增益天线”,《航空航天技术杂志》,第 13 卷,第 1 期,第 121-128 页,2020 年 1 月。Kablosuz Uygulamalar İçin Parazitik Elemanlı Geniş Bantlı Yüksek Kazançlı Bir Anten
摘要:连续体(FW-BIC)中的Friedrich – Wintgen结合状态在波物理现象的领域特别感兴趣。它是通过属于同一腔的两种模式的破坏性干扰来诱导的。在这项工作中,我们通过分析和数值显示了FW-BIC在T形腔中的存在,该腔由长度为d 0的存根d 0和两个长度d 1和d 2的侧向分支,该腔附着于限定的波导上。整个系统由在电信范围内运行的金属 - 绝缘子 - 金属(MIM)等离子波导组成。从理论上讲,当d 1和d 2相称时,这两个分支会诱导BIC。后者独立于D 0和有限的波导,其中T结构被移植了。通过打破BIC条件,我们获得了等离子诱导的透明度(PIT)共振。坑的共振对波导的介电材料的敏感性可能会被利用,以设计适合感应平台的敏感纳米传感器,这要归功于其很小的足迹。灵敏度为1400 nm/riU,分辨率为1.86×10 - 2 RIU显示出高度的性能水平。此外,该结构也可以用作生物传感器,在其中我们研究了人体中浓度的检测,例如Na +,K +和葡萄糖溶液,这些敏感性分别可以达到0.21、0.28和1.74 nm DL/G。我们设计的结构通过技术发展,并且具有良好的应用前景,作为生物传感器,可检测血红蛋白水平。通过Green功能方法获得的分析结果通过使用COMSOL多物理学软件基于有限元方法来验证。
摘要 - 鸡蛋壳通常数量很大,但主要不足。这种情况需要将它们滥用到环境中。因此,这种处置技术污染了环境,并导致携带疾病的生物的繁殖,从而对公共卫生产生严重的不利影响。在这项工作中,收集了鸡蛋壳,并在三个不同的年龄(存储时间)(例如5、15和30天)中加工成粉状形式。在每种情况下,鸡蛋壳粉(CEP)用作制造电容器的介电材料。制造过程中使用的分散介质是由干木薯淀粉(DC)制备的浆液。为每个考虑的年龄开发了五个电容器样品。评估了CEP,DC和捏造的电容器样品的电势。发现CEP的CARR指数约为9.00%,而DC的Carr指数约为11.41%。在20 O C至70 O C的温度范围内,电容器样品的电容从8.93、7.62、7.66降低至2.15,在5、15和30天分别处理的蛋壳分别为5.59至1.84(全部为NF)。基于EIA协议,基于JIS标准的同一年龄差异趋势的温度系数为-0.97,-1.44和-1.44(%/ O C),基于JIS标准和 - 0.90,-1.39和 - 1.34(%/ O C)。随着样品的温度在被考虑的范围内升高,总体相对介电常数从9137降低到1883年。从统计学上讲,CEP之间的相对介电常数为15天到30天的相对介电值无关紧要。电容器样品与常规陶瓷电容器进行了比较时表现出良好的性能能力。关键字 - 电容,木薯流出,流动性,回收利用,相对介电常数,浪费,存储时间
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。
高介电材料的研究最近引起了极大的关注,这是用于应用金属构造器金属(MIM)电容器的关键被动组件。在本文中,通过原子层沉积技术(ITO)氧化锡(ITO)预涂层的玻璃底物和氮化钛(TIN)涂层的SI覆盖的Si底物在本文中制备了50 nm厚的Al 2 O 3薄膜。光刻和金属提升技术用于处理MIM电容器。用探针站的半导体分析仪用于使用低中等频率范围进行电容 - 电压(C-V)表征。MIM电容器的电流 - 电压(I-V)特性在精确源/测量系统上测量。在电压范围从-5到5 V的玻璃上,Al 2 O 3膜在玻璃上的性能从10 kHz到5 MHz。Au/Al 2 O 3/ITO/玻璃MIM电容器在100 kHz时显示1.6 ff/µm 2的电容密度为1.6 ff/µm 2,在100 kHz时损耗〜0.005,在1 mv/cm(5 v)下,在100 kHz时损耗〜0.005,泄漏电流为1.79×10 -8 a/cm 2。Au/Al 2 O 3/TIN/SI MIM电容器在100 kHz时的电容密度为1.5 ff/µm 2,在100 kHz时损耗〜0.007,较低的泄漏电流为2.93×10 -10 -10 -10 -10 A/cm 2,在1 mv/cm(5 v)处于1 mv/cm(5 v)。获得的电源可能表明MIM电容器的有希望的应用。关键字
由于电容式传感器具有独特的设计和被动特性以及多功能传感能力,因此在压力监测方面的需求引起了广泛关注。电容式传感器的有效性主要取决于夹在导电电极之间的介电层厚度的变化。增材制造 (AM) 是一套先进的制造技术,它能够在一个步骤中生产出功能性电子设备。特别是,基于光固化的 3D 打印方法是一种可定制的工艺,其中树脂由多种成分组成,可提供必要的机械特性,并增强对目标测量的灵敏度。然而,具有基本柔韧性和介电性能的光固化树脂在 UV 固化生产过程中的可用性有限。高稳定性和灵敏性的电容式传感器的必要性要求具有更高介电常数和导电电极的光固化聚合物树脂。本研究的主要目的是设计和制造一种由新型光固化聚偏氟乙烯 (PVDF) 树脂组成的电容装置,利用 LCD 工艺,具有更高的分辨率,电极嵌入基板内。通过注射工艺,PVDF 基板中的嵌入式电极通道被导电银浆填充。增材制造的传感器通过电极之间介电材料电容的变化提供压力信息。进行基于 X 射线的微型 CT 扫描原位分析,以可视化填充导电电极的电容式传感器。对传感器进行测试,以测量电容响应与压力随时间变化的关系,这些变化可用于灵敏度分析。这项工作代表了 AM 集成在开发用于压力监测或可穿戴电子应用的高效、坚固的电容式传感器方面的重大成就。