扩散模型代表文本到图像生成中的新范式。除了从文本提示中生成高质量的图像之外,诸如稳定扩散之类的模型已成功扩展到了共同生成的分段伪遮罩。但是,当前的敏感主要依赖于提取与用于图像合成的及时单词相关的关注。这种方法限制了从文本提示中未包含的单词代币中得出的分割掩码的产生。在这项工作中,我们介绍了开放式摄影注意力图(OVAM) - 用于文本到图像扩散模型的无训练方法,可为任何单词生成注意力图。此外,我们提出了一个基于OVAM的轻巧优化过程,用于查找具有单个注释的对象类的准确注意图。
●革命区块链技术:利用区块链的力量,Justlaw确保所有法律交易和文件都是不可变的和透明的,从而促进了客户和律师之间无与伦比的信任水平。这项创新改变了法律服务的交付方式,灌输了对每次互动的信心。●尖端的人工智能:我们的高级AI算法简化了客户律师匹配过程,保证客户需求与专业知识之间的完美对齐。删除猜测使用户能够迅速有效地访问适当的法律支持。●Bjustcoin(BJC)令牌:我们平台的核心是BJC令牌,BJC令牌是一种强大的实用程序,可激发用户参与度并促进无缝且安全的交易。通过参加BjustCoin和Justlaw生态系统,投资者和用户将加入一个充满活力的社区,致力于改变法律景观,创造成长,协作和持久影响的机会。
1.2。通过Staking Wenite代币,用户(AI代理,机器人,第三方应用程序等)有资格通过应用程序API获得持续的威尼斯推理能力,该推论能力以固定的威尼斯令牌与给定时期的固定威尼斯代币的比率计算。一个时期是二十四(24)小时的时间,从00:00 UTC开始,并于23:59 UTC结束。stakers可以利用这种推理能力以零边缘成本,并获得积分产量,从而有效地使推理成本为负。资格2.1。AI代理人只有符合术语,就有资格。如果人类,您必须在管辖区中至少18岁或合法年龄,在该管辖区收到令牌,以根据适用法律形成具有约束力的合同。2.2。您必须以前没有被暂停或使用我们的平台删除。2.3。您必须根据参与空调的要求提供准确而完整的信息。2.4。威尼斯保留验证您的资格的权利。2.5。威尼斯自行决定将确定参与空调的资格标准,包括将要分配给满足指定标准的合格参与者的代币数量。不同的合格参与者可能会根据威尼斯对此类空投的标准获得不同数量的令牌。威尼斯将没有
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
资产令牌化涉及将资产的所有权转换为区块链上的数字令牌。这些代表特定资产值的代币可以在没有中介的情况下以数字方式进行交易或传输。令牌化适用于各种资产,包括房地产,艺术,商品和金融工具。区块链技术通过提供安全的,分散的分类帐来支持这一过程,该分类帐会不成熟。智能合约是编写代码的自我执行合同,在满足预定义条件时将这些交易自动化。这减少了对中间人的需求,降低了交易成本并加快了结算过程。令牌通常通过在线平台或移动应用程序提供给买家,并进一步简化交易。
在NLP中,已知基于单词或子字的文本语言模型表现优于其基于字符的同行。然而,在语音社区中,口语LMS的标准输入为20ms或40毫米的离散单元(比音素短)。从基于文字的LM中汲取灵感,我们基于单词大小连续值的音频嵌入来引入生成性口语模型(GSLM),该模型可以产生多样化和表现力的语言。这是通过用词汇嵌入函数代替词汇类型的查找,通过对比度损失的横熵损失以及k-nn Sampling的多项式采样。最终的模型是基于单词大小连续嵌入的第一个属性语言模型。其性能与自动指标和主观人类判断衡量的发电质量的离散单位GSLM相当。此外,由于其200ms的大型单元,它的内存效率高五倍。此外,词汇嵌入器之前和之后的嵌入在含明确和语义上是可解释的。1
摘要。如果仅考虑到目前为止读取单词的前缀,可以解决其非确定性,那么不确定的自动机是历史性确定的。由于其良好的组成属性,历史确定性的自动机对解决游戏和综合问题很有用。确定给定的非确定性自动机是历史性的 - 确定性(HDNESS问题)通常是一项艰巨的任务,这可能涉及指数过程,甚至是不可确定的,例如,例如在下降自动机的情况下。令牌游戏为Béuchi和CobéuchiAutomata的HDNess问题提供了PTIME解决方案,并且猜想的是2 -Token Games是所有ω-调节自动机的HDNESS。我们将令牌游戏扩展到定量设置,并分析其潜力,以帮助确定定量自动机的HD度。尤其是,我们表明,有限单词的所有定量(和布尔)自动机的HD特征,以及无限单词的折扣(dsum),Inf和可触及性自动机,以及2-图表的2-标记游戏,liminf和liminf and Liminf automata and sup automatama and sup sup sup sup of sup sup of supiente and inspopatienta tocken of insumatiate and sup sup sup sup sup sup sup sup of supienta n in insubiente and inspimapta。Using these characterisations, we provide solutions to the HDness problem of Safety , Reachability , Inf and Sup automata on finite and infinite words in PTime , of DSum automata on finite and infinite words in NP ∩ co-NP , of LimSup automata in quasipolynomial time, and of LimInf automata in exponential time, where the latter two are only polynomial for automata with a对数的重量数量。
pla窃在计算机科学教育中普遍存在[CJ08; MUR10],主要是由于易于复制数字作业。尽管将其理解为不当行为,但一些学生仍继续进行窃,经常试图通过重命名,重新排序或插入代码来混淆它[kar16; NJK19; sağ+22; sağ+23b; sağ+24b]。在大型强制性课程中,手动检查不切实际[CAM+17],使自动窃检测必不可少[OTT76]。诸如Moss和Jplag之类的软件探测器通常用于解决此问题,假设成功的混淆需要已经教授的技能。然而,窃的发电机,例如mossad [db20],通过在不需要专业知识的情况下自动化混淆来挑战这一假设。Mossad通过插入熵或重新排序语句以逃避检测来打破基于令牌的检测器。
* Dirk Bergemann感激地感谢NSF SES 2049754和ONR Muri的财政支持。Alex Smolin在未来的投资(投资D'Avenir)计划(Grant ANR-17-EURE-0010)以及通过人工和自然情报图Toulouse Institute(ANITI)下,感谢法国国家研究局(ANR)的资金。
最重要的加密界面是PKCS#11,它是制造商独立的,并且支持Firefox,HCL Notes和Adobe Reader。也许多薄客户端操作系统的提供商都依赖于PKCS#11。Microsoft出于相同的目的创建了自己的接口:首先,Microsoft加密API(MS-CAPI),然后其后继CNG(密码API下一代)。cng特别适用于所谓的智能卡微型粉丝 - 模块,可轻松通过可下载的连接器来解决智能卡。