术语、缩写基于官方互联网资源,涵盖乌克兰事件的当前和官方信息。材料是在 2022 年 2 月 24 日至 2022 年 3 月 31 日期间采样的,确保选择和分析了约 380 个军事术语样本。本文概述了军事术语形成的历史阶段。它发现军事术语的特点是大量的缩写,例如:首字母缩写、音节缩写、首字母缩略词、音字母缩写。军事术语还以大量的缩写为特征。对乌克兰语信息渠道及其英语版本的分析表明,翻译人员主要采用连续翻译,在转码和借译之间进行选择时,优先选择借译,因为转码通常会创建在翻译语言中没有意义的单元,即一种伪词。这主要涉及格形式的变化、短语中的单词数量、词缀、词序、词的形态或句法状态。应记住,翻译的术语必须符合翻译的语言。在某些情况下,当涉及未识别弹药时,会使用字母数字标识符,翻译人员也必须考虑到这一点。军事术语翻译分析
这项综合审查的重点是自主驾驶系统(ADS),该系统旨在减少人为错误,这是大约95%的汽车事故的原因。广告包括六个阶段:传感器,感知,本地化,评估,路径计划和控制。我们解释了每个阶段中使用的主要最新技术,分析了275篇论文,其中162个专门针对路径计划,因为其复杂性,NP-HARD优化性质和在AD中的关键作用。本文将路径规划技术分为三个主要组:传统(基于图,基于抽样的,基于梯度,基于优化的,插值曲线算法),机器和深度学习以及元数据效果优化,详细介绍了他们的优势和缺陷。的发现表明,代表我们研究的23%的元海拔优化方法是成为能够处理复杂问题的一般问题解决者的优先选择。此外,它们具有更快的收敛性和局部最小值的风险降低。占25%的机器和深度学习技术,以其学习能力和对已知方案的快速响应而受到青睐。混合算法的趋势(27%)结合了各种方法,合并了每种算法的好处并克服了对方的缺点。此外,自适应参数调整对于提高效率,适用性和平衡搜索能力至关重要。本评论阐明了自动驾驶系统中路径规划的未来,有助于应对当前的挑战并解锁自动驾驶汽车的全部功能。
对于 2024 财政年度,委员会建议当年可自由支配的资金(即 302(b) 拨款)总额为 147,096,000,000 美元,总体计划资金(包括抵消和调整)总额为 195,999,840 美元。2024 财政年度的建议比 2023 财政年度颁布的水平减少了 60,271,000,000 美元。美国仍然深陷高通胀,许多经济学家认为,在新冠疫情期间和疫情后,政府大量投入支出加剧了通胀。该法案代表着朝着恢复财政责任迈出了明确的一步,同时确保维持对关键和高优先级职能的资金。委员会法案通过消除重复和无效项目、做出战略性资金优先选择以及继续控制本届政府施加的失控支出和监管负担,促进了有利于就业增长的财政环境。委员会在整个法案中优先考虑了关键的生物医学研究、生物防御、有针对性的教育和监督责任。委员会的建议反映了仅通过减少可自由支配的支出来实现赤字削减所固有的挑战。只有实现强制性储蓄,我们的联邦预算赤字和国家债务才能大幅减少。委员会的建议还包括良好的政府、支持生命和支持家庭的规定、限制联邦政府的过度干预以及控制监管机构。
官能化石墨烯的有前途的方法之一是将杂原子掺入碳SP2晶格中,因为事实证明,它是一种可控制地调整石墨烯化学的有效且通用的方法。我们提出了与B掺杂剂选择性掺杂石墨烯的独特无污染方法,在标准的CVD生长过程中,它们从大部分Ni(111)单晶体中创建的储层中掺入一层,从而导致清洁,多功能和有效的方法用于创建B-poped Chapeene。我们结合了实验性(STM,XPS)和Theo Retical(DFT,模拟的STM)研究,以了解替代性B DOP蚂蚁的结构和化学性质。与先前报道的FCC位点中的替代B一起,我们首次观察到另外两个缺陷,即在顶部位点中替代B,而在八面体地下位点中的间隙B。广泛的STM在遗迹中证实存在于经过准备的B掺杂的Gra Phene中B掺杂剂的低浓度区域的存在,表明硼龙掺入不均匀。在两个替代部位之间,在低浓度的B掺杂区域中没有观察到偏好,而在高B浓度区域中,优先选择了Sublattices之一,以及缺陷的对准。这将在生长的B掺杂石墨烯中产生不对称的sublattice掺杂,从理论上讲,这将导致显着的带隙。
第 5 节:计量系统要求................................................................................................54 5.1 目的和标准....................................................................................................................54 5.1.1 按日期适用性...................................................................................................54 5.1.2 按设备适用性...................................................................................................55 5.1.3 精度确定......................................................................................................56 5.1.4 优先选择最佳可用精度....................................................................................57 5.1.5 计量和遥测....................................................................................................57 5.1.6 计量系统的类型.............................................................................................57 5.2 系统控制和监控(瞬时数据).............................................................................58 5.2.1 联络线.............................................................................................................58 5.2.1.1 外部联络线.............................................................................................59 5.2.1.2 动态传输.............................................................................................60 5.2.1.3 内部联络线5.2.1.4 特殊情况和变压器连接....................................................................... 64 5.2.2 区域调节.................................................................................................... 65 5.2.3 发电调度数据........................................................................................ 65 5.2.4 发电储备................................................................................................ 66 5.2.5 系统恢复....................................................................................................... 66 5.2.6 通用遥测....................................................................................................... 66 5.2.7 系统控制和监测计量维护.................................................................................... 66 5.2.8 精度调查.................................................................................................... 67 5.2.9 电压和电流的特殊考虑和要求............................................................................. 67 5.3 计费(累加器数据)............................................................................................. 68 5.3.1 收集间隔和单位............................................................................................. 68 5.3.2 一次计费仪表精度............................................................................................. 68 5.3.3 备用计费表要求......................................................................................69 5.3.4 维护....................................................................................................69 5.3.5 精度检查和保留................................................................................................69 5.3.6 PJM 中大西洋 500 kV 计量点的位置...............................................................70 5.3.6.1 测量点补偿.......................................................................................70 5.3.7 地理上不连续的负载.......................................................................70 5.3.8 发电计费计量.........................................................................................................70 5.3.9 小型能源计费计量.........................................................................................71
静电储能电容器是电力电子器件必不可少的无源元件,由于电介质陶瓷能够在 > 100 ˚C 的温度下更可靠地工作,因此优先选择电介质陶瓷而不是聚合物。大多数工作集中在非线性电介质组合物上,其中极化 (P)/电位移 (D) 和最大场 (E max ) 经过优化,以提供能量密度值 6 ≤ U ≤ 21 J cm − 3 。然而,在每种情况下,P 的饱和 (dP/dE = 0,AFE) 或“部分”饱和 (dP/dE → 0,RFE) 都会限制在击穿前可以达到的 U 值。通过设计高介电常数准线性电介质 (QLD) 行为,dP/dE 保持恒定直至超高 E max ,可以进一步改善 U 相对于弛豫器 (RFE) 和反铁电体 (AFE) 的程度。 QLD 多层电容器原型的介电层由 0.88NaNb 0.9 Ta 0.1 O 3 - 0.10SrTiO 3 -0.02La(Mg 1/2 Ti 1/2 )O 3 组成,室温下 U ≈ 43.5 J cm − 3 ,支持极大的 E max ≈ 280 MV m − 1 ,对于基于粉末流延技术的设备,这两项性能均超过了当前最先进的水平两倍。重要的是,QLD 电容器在高达 200 ˚ C 的温度下 U ( ≈ 15 J cm − 3 ) 变化很小,并且具有强大的抗循环降解能力,为可持续技术的开发提供了一种有前途的新方法。
摘要 - 自治车辆(AVS)正在迅速前进,其中4级AVS已经在现实世界中运行。curland Avs仍然落后于人类驾驶员的适应性和表现,通常表现出过度保守的行为,偶尔违反交通法律。现有的解决方案(例如运行时执行)通过自动修复运行时的AV计划轨迹来减轻这种情况,但是这种方法缺乏透明度,应该是最后一个度假胜地的度量。,优先选择AV修复是概括超出特定事件并为用户解释的。在这项工作中,我们提出了Fix d Rive,该框架分析了违反违法行为或法律行为的驾驶记录,以产生AV驾驶策略维修,以减少再次发生此类事件的机会。这些维修是用µ驱动器捕获的,µ驱动器是一种高级域特异性语言,用于针对基于事件的触发器指定驾驶行为。为最先进的自主驾驶系统Apollo实施,Fi d rive识别和可视化驾驶记录中的关键时刻,然后使用零射门学习的多模式大语言模型(MLLM)来生成µ驱动程序。我们在各种基准方案上测试了F IX D Rive,并发现生成的维修改善了AV的性能,相对于以下交通法律,避免碰撞并成功到达目的地。此外,在实践中,修复AV(15分钟的离线分析和0.08美元)的直接成本在实践中是合理的。索引术语 - 自主车辆,自动驾驶系统,多模式大型语言模型,驾驶合规性
风力涡轮机越来越多地安装在森林中,这可能导致气候缓解工作和自然保护之间的土地使用纠纷。环境影响评估先于风力涡轮机的建造,以确保风力涡轮机仅安装在具有潜在保护价值的管理或退化森林中。然而,尚不清楚在环境影响评估中被认为无关紧要的动物是否会受到管理森林中风力涡轮机的影响。我们调查了风力涡轮机对常见森林鸟类的影响,方法是沿德国黑森州 24 片温带森林中风力涡轮机影响梯度计数鸟类。在 860 个点计数期间,我们计数了 45 个物种的 2231 只鸟。鸟类群落与森林结构、季节和风力涡轮机的转子直径密切相关,但与风力涡轮机距离无关。例如,在安装风力涡轮机的结构较差(-38%)和单一栽培(-41%)的森林中,以及在安装较大和较多风力涡轮机(-24%)的幼年落叶林(-36%)中,鸟类数量减少。总体而言,我们的研究结果表明,管理森林中的风力涡轮机部分取代了常见的森林鸟类。如果这些鸟类被迫流离失所,风力涡轮机可能会间接导致其种群数量下降。然而,森林鸟类群落对当地森林质量的敏感度高于对风力涡轮机的存在。为了防止森林动物进一步流离失所,在风力涡轮机的空间规划中应优先选择对野生动物质量最低的森林,例如高速公路沿线小型且结构较差的单一栽培林。
由于其无限的增殖潜力、整倍体状态以及向任何细胞类型分化的能力,人类多能干细胞 (hPSC)(无论是胚胎细胞还是诱导细胞)在疾病建模和生产临床应用细胞方面具有巨大潜力 [ 1 – 3 ]。尽管已经建立了来自患有各种疾病的患者的许多 hPSC 系,但是针对某些病理或罕见基因突变生成 hPSC 系仍然具有挑战性。此外,个体间的遗传异质性可能导致生物学变异,从而使系间比较困难,尤其是来自健康对照和患者的 hPSC 之间的比较 [ 4 , 5 ]。对 hPSC 进行遗传操作的能力为我们引入、修改或校正突变以及生成遗传匹配的同基因对照系提供了机会,从而建立明确的基因型-表型关联 [ 6 , 7 ]。近年来,基于位点特异性核酸酶(包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),尤其是成簇的规律间隔短回文重复序列 (CRISPR) 系统)的技术已使 hPSC 的基因组工程变得十分灵活 [8,9]。然而,由于 hPSC 的固有特性,包括相对较差的转染效率和转染后存活率低、难以分离克隆群、优先选择和扩增非整倍体克隆以及自发细胞分化,hPSC 工程仍然具有挑战性。为了缓解这些问题,已经描述了几种用于产生各种不同诱变事件的方案 [10-14]。尽管人们投入了大量精力来改进产生转基因 hPSC 的方法程序,但只有少数研究
网站:https://cy.myhandlingsoftware.com 在强制性网站上请求协助的 CIV 电子邮件:traficops@toulon-hyeres.aeroport.fr 商务航站楼:fbo@toulon-hyeres.aeroport.fr MIL 电子邮件:aero-hyeres.bdv-gestion.fct@intradef.gouv.fr “Côte d'Azur” 领土代表处:04 93 17 23 01 - 传真:04 93 17 23 02 AD 使用条件:RWY 05/23:主跑道。RWY 13/31:仅当气象条件不再允许使用 05/23 或无法使用时才可使用辅助。RWY 13:除获得 AD 主管豁免的国家飞机外,禁止 LDG。RWY 31:顺风时禁止 LDG。风力限制:所有 QFU,最大侧风限制为 25 kt RWY 干风,20 kt RWY 湿风,根据平均风速计算。为了减少噪音污染,在气象条件允许的情况下,优先选择 RWY 05/23 而不是 TKOF。PAPI RWY 05:强制白天和夜间使用。在 RWY 带上的特殊存在: - 在 05 号跑道以北的最后 1000 米处:带有红色夜间标记的围栏:高 2.5 米,顶峰高度 3.86 米;土丘:43°06'12''N 006°09'16''E;沿 05 号跑道的航道:43°06'14''N 006°09'18''E。- RWY 05 跑道尽头南侧:带红色夜间标记的围栏:高 2.5 米,顶峰海拔 3.07 米。 QFU 05 的北面和南面有沼泽。在 QFU 05 以北、43°06'05.85''N 006°08'58.78''E、高度 25 米、直径 500 米的圆圈处存在未标记的温室。