由于电子从大分子链上的π分子轨道离域,了解有机大分子的电子结构和立体化学之间的密切联系,从而获得半导体或金属导电性,这有利于解释和理解它们的电学、电化学和光学性质以及不同的导电模式,也将更好地解释这些性质,特别是在通过化学聚合或电沉积开发超薄导电或半导体层时;这些结构用于开发电流或阻抗生物传感器(生物电子学)中DNA、RNA或蛋白质的固定表面,以及OJI(“有机”结型晶体管)、Oled(有机发光二极管)、用于纳米电化学、半导体电化学和光电化学的纳米电极,以及它们在数字显示、防腐、量子点(纳米点)和有机光伏电池(OPVC)中的众多应用。
精准医疗依赖于对疾病发病机制的详细分子理解。在此,我们基于对导致这种致命癌症的可用药物途径改变的新见解,考虑了恶性外周神经鞘瘤 (MPNST) 急需的治疗方案。最近的观察表明,致癌 GTPase RABL6A 通过过度激活细胞周期蛋白依赖性激酶 (CDK) 和失活视网膜母细胞瘤 (RB1) 肿瘤抑制因子,在促进 MPNST 进展方面发挥着重要作用。在 MPNST 的临床前研究和其他肿瘤的临床研究中,CDK4/6 抑制剂单一疗法显示出有限的疗效和持久性。因此,我们讨论了在适用于 MPNST 和其他 Ras 驱动的恶性肿瘤的靶向联合疗法中抑制多种 RABL6A 效应物(特别是 CDK4/6 和 MEK 激酶)的原理和临床益处。
1 加州理工学院物理、数学和天文学系,1200 E. California Blvd.,帕萨迪纳,CA 91125,美国 2 加州理工学院量子技术联盟 ( AQT ),1200 E. California Blvd.,帕萨迪纳,CA 91125,美国 3 哈佛大学约翰·A·保尔森工程与应用科学学院,29 Oxford St.,剑桥,MA 02138,美国 4 卡尔加里大学量子科学与技术研究所和物理与天文系,2500 University Dr. NW,卡尔加里,AB T2N 1N4,加拿大 5 奥地利科学技术研究所,A-3400 Klosterneuburg,奥地利 6 威斯康星大学麦迪逊分校物理系,1150 University Avenue,麦迪逊,WI 53706,美国7 任何通讯作者。
通过 3 层激酶级联,从输出到输入信号有负反馈,从而确保对噪声和分级响应的鲁棒性 [2]。MAPK 对各种各样的输入信号作出反应,包括激素、细胞因子和生长因子等生理线索,以及内源性应激和环境信号。因此,传统上将它们分为丝裂原激活 MAPK 和应激激活 MAPK,经典代表有丝裂原反应的 ERK 以及应激反应的 JNK 和 p38。从生理学上讲,这种区别很模糊,因为这三个家族都对各种各样重叠的信号作出反应。MAPK 信号在许多疾病中发生了改变 [3],因此,在过去的二十年里,其激酶成分一直是药物开发的焦点。在癌症和针对 RAS-RAF-MEK-ERK 通路的药物方面取得了最大的进展。人们已经对针对该通路的药物进行了大量的研究,并阐明了敏感性和耐药性的机制。由于研究结果已被广泛综述 [ 4 – 13 ],我们在此仅简要总结一些突出的发现。相反,我们重点讨论 MAPK 信号传导中较少综述的领域及其与耐药性的相关性,即 JNK 和 p38 MAPK 通路,以及与 MAPK 信号传导相关的表观遗传和代谢变化。