图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
通常可以在未经事先许可或指控的情况下以任何格式或媒介进行个人研究或研究,教育或非营利性目的以任何格式或媒介的第三方复制,显示或执行全文项目的副本。
摘要准确的充电状态(SOC)估计取决于精确的电池模型。非线性和不稳定干扰因素的影响使准确的SOC估计变得困难。为了获得准确的电池模型,提出了基于NARX(具有外源输入的非线性自回归网络)的方法,提出了复发性神经网络和移动窗口方法。本文从以下三个方面提高了SOC估计的准确性,建模速度和鲁棒性。首先,为了克服对模型训练过程中数据量的过度依赖,使用NARX复发性神经网络来建立电池模型。narx(具有外部输入的非线性自回旋)具有延迟和反馈功能的复发性神经网络可以保留上一刻的输入和输出,并将其添加到下一个时刻的计算中。因此,使用少量数据实现了更好的估计结果;其次,移动窗口方法用于梯度爆炸和NARX模型训练过程中可能发生的梯度消失。第三,通过将其与不同的工作条件和不同温度下的其他方法进行比较,可以验证该模型的有效性。结果表明,所提出的模型具有更高的SOC估计准确性和速度。提出的模型的RMSE性能减少了约65%,并且执行时间缩短了约50%。
I. 资助行动描述:地方国防社区合作办公室 (OLDCC) 向各州和社区提供赠款和技术援助,以促进与国防部的伙伴关系,包括军事设施和当地工业基地,以加强任务,实现设施和基础设施节约并降低运营成本,解决侵占和兼容土地使用问题,支持军人家庭,提高军事、民用和工业准备度和弹性。它还使州和地方政府能够计划和执行民事经济调整响应,以应对国防行动对劳动力、企业和社区的影响。这些努力经常利用其他联邦和州/地方技术和财政资源,进一步造福国防部和我们的民事合作伙伴。所有 OLDCC 活动都是在州和地方民事努力的同时进行的,要么是为了应对当地的影响或需要,要么是为了支持我们的国家安全任务,体现了国防部长的三大优先事项:保卫国家、照顾我们的人民和通过团队合作取得成功。这些活动还支持国防部临时国家安全战略指导的以下要素:
由Sridhar K从Eoffice生成,SO(SK)-HR-II-CSIR HQ,SO SO(HR-II),CSIR HQ,28/08/2024 02:41 PM
• 年度评估计划 (AAP) 是助理经理/办公室主任 (AM/OD) 监督活动的财政年度计划。它包含每个组织特定的评估要求,并通过合并每个组织适用的 APAP 部分来制定。
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
