过去的研究主要使用较低频率(< 30 Hz)的频率标记。但是,使用低频标记存在两个问题。首先,低频标记可以被有意识地感知,从而干扰任务处理。其次,这种低频标记可能会干扰或破坏相同范围内的内源性神经振荡,而内源性神经振荡通常与认知过程有关,包括预测即将到来的感觉输入(Arnal 和 Giraud 2012;Lewis 等人 2016)和自上而下的机制,这些机制塑造了大脑中远处区域或网络之间的通信(Bastos 等人 2015;Fries 2015;Bonnefond 等人 2017)。为了克服这些问题,过去 5 年来,在新开发的具有更高刷新率的投影仪的推动下,研究以更高的频率(> 60 Hz)标记信息。这
先前的研究表明,RTMS对各种中风后障碍有效。例如,一级运动皮层的相关低频(1 Hz)RTM可改善中风后的运动无力(3)。在顶层皮质处的连续theta爆发刺激显着改善了半部空间疏忽患者的症状(9)。关于语言功能障碍,右下角的低频(1 Hz)RTMS对命名准确性具有积极影响(10)。尽管如此,关于是否与语音语言疗法(SLT)同时给予RTM的协议缺乏一致性,如果是的,则提供了SLT的强度和类型(11,12)。这一不一致性被指出为降低该领域研究质量的限制(13)。此外,尽管最近的荟萃分析表明,iPsiles的高频和对比的低频RTM都可能有效地治疗冲程后的吞咽困难(14),必须解决和纠正以前固有的研究中,以后的研究中,以后的方法更强大的证据和有力的证据(15)(15)。
超材料是一类具有负介电常数和/或磁导率的人工材料,在自然界中尚不存在此类材料。超材料的概念最早由JB Pendry于20世纪90年代提出,近二十年来,高频超材料在电磁学、力学和光学等领域得到了广泛的研究和应用。超材料由多个具有相同结构的晶胞组成,这些晶胞在空间中周期性排列,以模拟晶体中的晶格结构。对于高频电磁超材料,每个晶胞由导体形成的电感和导体之间形成的杂散电容组成。电感和电容在特定频率下发生共振,从而感应出较大的导体电流,进一步增强外加磁场。然而,现有的高频超材料由于一些技术瓶颈,无法用于低频(工频至兆赫兹)大功率(>200W)电磁装置。该项目的目标是开发具有负磁阻的低频超材料单元,以获得一些基本的设计知识,以备将来的突破。该项目中低频超材料的目标应用是三维无线电力传输系统。该项目的成功将为未来制造世界上第一种低频超材料产生新的基础知识。项目/中心网站 https://www.ntu.edu.sg/csie
LVS-101和LVS-2011速度传感器已设计用于旋转机器的低频振动监测应用。更具体地说,传感器满足非常低速水电机的特殊低频要求。LVS传感器根据电动力原理运行,用于测量机器的轴承绝对振动。传感器的传感元件是围绕永久磁体移动的高精度弹簧支撑的线圈,该电压与振动速度成正比。通过设计,传感器具有出色的灵敏度和线性,降低到非常低的振动水平。内置电子设备允许传感器准确监视振动频率降低到0.5Hz。可以使用传感器的水平和垂直模型,有关全向传感器,请参见LVS-301。传感器提供了两个电压输出与振动速度成正比的电压输出:•与缓冲的非线性信号相对应的原始输出•低频补偿的动态振动速度信号,以监测到
检查对于防止混凝土剥落和保持隧道的音质很重要。将视觉检查和锤击测试结合的人类检查具有可靠的记录,被认为是可靠的。然而,人类检查是耗时的,结果取决于检查员。振动测量结果对于铁路隧道的未固定混凝土段中缺陷的区域获得的结果表明,有许多缺陷被高估了剥落的风险。这项研究的目的是阐明这种高估的原因。准备了带有倾斜脱离的混凝土标本,并研究了脱离的锤击声音的变化。进行了数值分析以补充实验结果。结果表明,缺陷的低频振动不太可能被空气作为声压传输。此外,考虑到人类的听觉特征,低频声音相对较难听到。因此,低频振动可能不会影响锤击声。尽管可以通过锤击声音来区分缺陷,但不能仅凭声音准确地评估剥落风险,这是人类检查员高估风险的主要原因之一。
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。
消声器技术 Silentor 的专利排气噪声衰减原理将吸收和反射衰减与先进的空气动力学相结合,事实证明,Silentor 消声器在以下方面优于传统消声器 - 噪声衰减 - 背压 - 空间利用率 这些参数中的任何一个都可以进行优化,如较小的三角形所示,例如,在给定体积内更有效的噪声衰减或更低的背压。还可以优化任何参数组合,例如,降低给定体积和背压,同时仍保持原始噪声衰减。 特殊的低频衰减 与其他消声器相比,Silentor 消声器的特殊之处在于它们能够衰减人耳可听到的所有频率 - 包括低频噪声,而传统消声器通常很难降低低频噪声。这种低频噪声取决于发动机的转速和气缸数,通常不仅令人恼火,而且是实现可接受的总噪声水平的关键噪声。节省燃料 Silentor 压力恢复扩散器和其他空气动力学元件可以大大降低噪音,而伴随的压力损失却非常有限。 降低背压可以减少燃料消耗或增加发动机的动量和功率。 尺寸有限 Silentor 的衰减原理使其能够按照规格降低噪音,即使在可用空间非常有限和不规则以至于无法安装传统消声器的情况下也是如此。 使用寿命更长 Silentor 消声器的使用寿命比您通常预期的要长。 作为“半压力”容器,其结构本身经过久经考验且坚固耐用。 此外,吸收材料以特殊的方式放置在消声器内部并受到保护,这意味着 Silentor 消声器在其整个使用寿命期间都能保持其衰减能力。