1 洛桑联邦理工学院 (EPFL),物理研究所,CH-1015 洛桑,瑞士 2 洛桑联邦理工学院 (EPFL) 量子科学与工程中心,CH-1015 洛桑,瑞士 3 马克斯普朗克物质结构与动力学研究所,自由电子激光科学中心 (CFEL),Luruper Chaussee 149,22761 汉堡,德国 4 牛津大学鲁道夫佩尔斯理论物理中心,牛津 OX1 3PU,英国 5 ISIS 设施,卢瑟福阿普尔顿实验室,哈威尔校区,迪德科特 OX11 0QX,英国 6 德克萨斯大学奥斯汀分校物理系 7 哥伦比亚国立大学超导和纳米技术组,物理系,哥伦比亚波哥大 8 苏黎世大学物理系,CH-8057 瑞士苏黎世
这种SCNT卵母细胞的人工激活导致细胞分裂和染色体分离为伪极性体,并以70%的效率下的二核原体。与正常二倍体(n = 46)数量相比,极性体和Zygotes中单个染色体的下一代测序表明,染色体的数量降低了近一半(n = 19)(n = 19)。同源对的全面测序表明,平均将23对同源对的一半(n = 11)正确分离为极体和合子,而剩余的染色体对保持在一起,导致了肾上变。未检测到体细胞同源物之间的重组证据。
过去二十年,凝聚态物理、核物理、引力和量子信息等多个原本毫不相关的学科之间出现了惊人的联系,这得益于实验的进步以及全息对偶带来的强大新理论方法。在这篇非技术性评论中,我们介绍了全息对偶与量子多体动力学相关的一些最新进展。这些包括对没有准粒子的强相关相及其传输特性、量子多体混沌和量子信息的扰乱的洞察。我们还讨论了使用量子信息理解全息对偶本身结构的最新进展,包括对偶的“局部”版本以及具有引力对偶的量子多体态的量子误差校正解释,以及这些概念如何有助于证明黑洞蒸发的幺正性。
在西方的传统中,人们认为运动是由神经中的流体或精神产生的,来自内心,或者根据某些少数群体的观点,是大脑。到1630年代,当人们了解到心脏只是一个泵时,笛卡尔表明,运动和大脑功能是通过液压机制发生的,与他在巴黎公园中移动的雕像中观察到的运动和大脑功能相似。,但是切割神经表明没有这样的流体。这个左派思想家丧失;在1670年代,先驱显微镜扬·斯威默丹(Jan Swmersdam)建议,从神经上移动的任何东西都可能就像振动沿着一块木板流动,但他不能建议这可能是有效的(Swmermdam,1758年)。当时,关于大脑功能的大多数想法都使用了机械隐喻 - “印象”一词仍然在日常使用中,这意味着刺激推向了大脑的结构,留下了它们的形状 - 一种印象。尽管具有力量和寿命,但这些想法还是未能对科学的基本考验 - 没有证据。掌握了18世纪下半叶的电力,允许对孤立的神经和最终在大脑上进行精确的实验,从而导致有关大脑功能的新的,更有信息的隐喻。它也具有矛盾的效果 - 因为电语的语言基于水性隐喻(当前,流量等。),我们对大脑功能的思考的各个方面被拉回旧的液压隐喻。更加重要的是,随着1830年代后期的电报系统的发展,有一个强大的相似之处:神经系统被描述为
本报告对排水型船体水动力冲击载荷的最新进展进行了全面评估。本主题从三种不同的现象出发,即砰击、波浪拍击和正面冲击。导致水动力冲击的因素是根据环境和船舶特性来定义的。冲击理论在二维和三维分析水动力模型、水弹性模型、耐波性理论、模型试验和全尺寸数据等子类别中进行回顾。确定并描述了适合分析和潜在设计应用的技术和程序,总结了每种技术和程序的特点,并介绍了与这些技术和程序相关的示例计算。本报告最后提出了未来研究的建议。
测量由4位考官Eran Kassif,T.W,A.M。和E.H.进行。使用腹部RM6C 2 - 6 MHz凸探针或阴道RIC 6 - 12MHz探针(均为探针,GE Healthcare),使用Voluson E10超声机(GE Healthcare)。从非vertex表现中的18周,使用了长达17周的妊娠17周的经阴道方法和腹部方法。为了获得标准化的图像,我们通过前fontanelle获得了胎儿大脑的中尺平面。图像被放大,以使胎头占据屏幕的70%。探针被倾斜,直到CC水平有清晰的边缘。测量了CC的前后长度。通过3个成像标准支持早期CC的识别:1)低技术结构的出现,2)跨越大脑的中线,以及3)位于脊髓骨动脉的下方,上方的tela tela tela choroidea(图1和在线视频1和在线视频1和2)。使用颜色多普勒超声检查证明了可质动脉。当颜色多普勒上可呈周围动脉不清或连续时,使用了缓慢的流动多普勒。我们进行了一项额外的试点研究,评估了CC测量的可重复性。五十九个胎儿的观察者内变异性评估了37个胎儿,用于观察者间的变异性。对于观察者内变异性,同一操作员对2个不同图像进行了2个测量。对于观察者间变异性,第二个操作员在新获得的图像上测量了CC长度。这已确定在出现后,我们与发现胎儿体积测量的患者联系了第五个百分点。
摘要 Sen 和 Gilbert [Nature, (1988) 334, 364- 366] 证实,来自人类免疫球蛋白开关区的富含鸟嘌呤的单链 DNA 能够自我结合形成稳定的四链平行 DNA 结构。拓扑异构酶 11 不会切割单链 DNA 分子。令人惊讶的是,当该 DNA 序列退火为四链结构时,该酶确实会切割相同的 DNA 序列。观察到的两个切割位点与该 DNA 分子与互补分子配对以形成正常 B-DNA 双链时发现的位点相同。这些切割被证实是蛋白质连接的,并且可以通过添加盐来逆转,这表明拓扑异构酶 11 的反应机制正常。此外,由互补寡核苷酸与四链结构结合而形成的八链 DNA 分子也被拓扑异构酶 11 切割,尽管该分子对限制性内切酶消化具有抗性。这些结果表明,单链 DNA 可能具有引导拓扑异构酶 11 到达结合位点的序列信息,但该位点必须以正确的方式进行碱基配对才能做到这一点。四链 DNA 分子能够作为酶的底物这一事实进一步表明,这些 DNA 结构可能存在于细胞中。